Page 1

Displaying 1 – 5 of 5

Showing per page

Delegation equilibrium payoffs in integer-splitting games

Sylvain Sorin, Cheng Wan (2013)

RAIRO - Operations Research - Recherche Opérationnelle

This work studies a new strategic game called delegation game. A delegation game is associated to a basic game with a finite number of players where each player has a finite integer weight and her strategy consists in dividing it into several integer parts and assigning each part to one subset of finitely many facilities. In the associated delegation game, a player divides her weight into several integer parts, commits each part to an independent delegate and collects the sum of their payoffs in...

Denumerable Markov stopping games with risk-sensitive total reward criterion

Manuel A. Torres-Gomar, Rolando Cavazos-Cadena, Hugo Cruz-Suárez (2024)

Kybernetika

This paper studies Markov stopping games with two players on a denumerable state space. At each decision time player II has two actions: to stop the game paying a terminal reward to player I, or to let the system to continue it evolution. In this latter case, player I selects an action affecting the transitions and charges a running reward to player II. The performance of each pair of strategies is measured by the risk-sensitive total expected reward of player I. Under mild continuity and compactness...

Deterministic Markov Nash equilibria for potential discrete-time stochastic games

Alejandra Fonseca-Morales (2022)

Kybernetika

In this paper, we study the problem of finding deterministic (also known as feedback or closed-loop) Markov Nash equilibria for a class of discrete-time stochastic games. In order to establish our results, we develop a potential game approach based on the dynamic programming technique. The identified potential stochastic games have Borel state and action spaces and possibly unbounded nondifferentiable cost-per-stage functions. In particular, the team (or coordination) stochastic games and the stochastic...

Distributed accelerated Nash equilibrium learning for two-subnetwork zero-sum game with bilinear coupling

Xianlin Zeng, Lihua Dou, Jinqiang Cui (2023)

Kybernetika

This paper proposes a distributed accelerated first-order continuous-time algorithm for O ( 1 / t 2 ) convergence to Nash equilibria in a class of two-subnetwork zero-sum games with bilinear couplings. First-order methods, which only use subgradients of functions, are frequently used in distributed/parallel algorithms for solving large-scale and big-data problems due to their simple structures. However, in the worst cases, first-order methods for two-subnetwork zero-sum games often have an asymptotic or O ( 1 / t ) convergence....

Currently displaying 1 – 5 of 5

Page 1