Displaying 141 – 160 of 199

Showing per page

Distributed accelerated Nash equilibrium learning for two-subnetwork zero-sum game with bilinear coupling

Xianlin Zeng, Lihua Dou, Jinqiang Cui (2023)

Kybernetika

This paper proposes a distributed accelerated first-order continuous-time algorithm for O ( 1 / t 2 ) convergence to Nash equilibria in a class of two-subnetwork zero-sum games with bilinear couplings. First-order methods, which only use subgradients of functions, are frequently used in distributed/parallel algorithms for solving large-scale and big-data problems due to their simple structures. However, in the worst cases, first-order methods for two-subnetwork zero-sum games often have an asymptotic or O ( 1 / t ) convergence....

Distributed classification learning based on nonlinear vector support machines for switching networks

Yinghui Wang, Peng Lin, Huashu Qin (2017)

Kybernetika

In this paper, we discuss the distributed design for binary classification based on the nonlinear support vector machine in a time-varying multi-agent network when the training data sets are distributedly located and unavailable to all agents. In particular, the aim is to find a global large margin classifier and then enable each agent to classify any new input data into one of the two labels in the binary classification without sharing its all local data with other agents. We formulate the support...

Distributed consensus control for discrete-time linear multi-agent systems with reduced-order observer

Wenhai Chen, Lixin Gao, Xiaole Xu, Bingbing Xu (2015)

Kybernetika

In this paper, we investigate multi-agent consensus problem with discrete-time linear dynamics under directed interaction topology. By assumption that all agents can only access the measured outputs of its neighbor agents and itself, a kind of distributed reduced-order observer-based protocols are proposed to solve the consensus problem. A multi-step algorithm is provided to construct the gain matrices involved in the protocols. By using of graph theory, modified discrete-time algebraic Riccati...

Distributed event-triggered algorithm for optimal resource allocation of multi-agent systems

Weiyong Yu, Zhenhua Deng, Hongbing Zhou, Xianlin Zeng (2017)

Kybernetika

This paper is concerned with solving the distributed resource allocation optimization problem by multi-agent systems over undirected graphs. The optimization objective function is a sum of local cost functions associated to individual agents, and the optimization variable satisfies a global network resource constraint. The local cost function and the network resource are the private data for each agent, which are not shared with others. A novel gradient-based continuous-time algorithm is proposed...

Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays

Jiangping Hu, Guanrong Chen, Han-Xiong Li (2011)

Kybernetika

As embedded microprocessors are applied widerly to multi-agent systems, control scheduling and time-delay problems arose in the case of limited energy and computational ability. It has been shown that the event-triggered actuation strategy is an effective methodology for designing distributed control of multi-agent systems with limited computational resources. In this paper, a tracking control problem of leader-follower multi-agent systems with/without communication delays is formulated and a distributed...

Distributed filtering of networked dynamic systems with non-gaussian noises over sensor networks: A survey

Derui Ding, Qing-Long Han, Xiaohua Ge (2020)

Kybernetika

Sensor networks are regarded as a promising technology in the field of information perception and processing owing to the ease of deployment, cost-effectiveness, flexibility, as well as reliability. The information exchange among sensors inevitably suffers from various network-induced phenomena caused by the limited resource utilization and complex application scenarios, and thus is required to be governed by suitable resource-saving communication mechanisms. It is also noteworthy that noises in...

Distributed H estimation for moving target under switching multi-agent network

Hu Chen, Qin Weiwei, He Bing, Liu Gang (2015)

Kybernetika

In this paper, the distributed H estimation problem is investigated for a moving target with local communication and switching topology. Based on the solution of the algebraic Riccati equation, a recursive algorithm is proposed using constant gain. The stability of the proposed algorithm is analysed by using the Lyapounov method, and a lower bound for estimation errors is obtained for the proposed common H filter. Moreover, a bound for the H parameter is obtained by means of the solution of the...

Distributed optimization via active disturbance rejection control: A nabla fractional design

Yikun Zeng, Yiheng Wei, Shuaiyu Zhou, Dongdong Yue (2024)

Kybernetika

This paper studies distributed optimization problems of a class of agents with fractional order dynamics and unknown external disturbances. Motivated by the celebrated active disturbance rejection control (ADRC) method, a fractional order extended state observer (Frac-ESO) is first constructed, and an ADRC-based PI-like protocol is then proposed for the target distributed optimization problem. It is rigorously shown that the decision variables of the agents reach a domain of the optimal solution...

Distributed output regulation for linear multi-agent systems with unknown leaders

Xinghu Wang, Haibo Ji, Chuanrui Wang (2013)

Kybernetika

In this paper, the distributed output regulation problem of linear multi-agent systems with parametric-uncertain leaders is considered. The existing distributed output regulation results with exactly known leader systems is not applicable. To solve the leader-following with unknown parameters in the leader dynamics, a distributed control law based on an adaptive internal model is proposed and the convergence can be proved.

Distributed resilient filtering of large-scale systems with channel scheduling

Lili Xu, Sunjie Zhang, Licheng Wang (2020)

Kybernetika

This paper addresses the distributed resilient filtering for discrete-time large-scale systems (LSSs) with energy constraints, where their information are collected by sensor networks with a same topology structure. As a typical model of information physics systems, LSSs have an inherent merit of modeling wide area power systems, automation processes and so forth. In this paper, two kinds of channels are employed to implement the information transmission in order to extend the service time of sensor...

Distributed scheduling of sensor networks for identification of spatio-temporal processes

Maciej Patan (2012)

International Journal of Applied Mathematics and Computer Science

An approach to determine a scheduling policy for a sensor network monitoring some spatial domain in order to identify unknown parameters of a distributed system is discussed. Given a finite number of possible sites at which sensors are located, the activation schedule for scanning sensors is provided so as to maximize a criterion defined on the Fisher information matrix associated with the estimated parameters. The related combinatorial problem is relaxed through operating on the density of sensors...

Disturbance decoupling of nonlinear MISO systems by static measurement feedback

Richard Pothin, Claude H. Moog, Xiao Hua Xia (2002)

Kybernetika

This paper highlights the role of the rank of a differential one-form in the solution of such nonlinear control problems via measurement feedback as disturbance decoupling problem of multi-input single output (MISO) systems. For the later problem, some necessary conditions and sufficient conditions are given.

Disturbance observer based integral terminal sliding mode control for permanent magnet synchronous motor system

Junxiao Wang, Fengxiang Wang, Xianbo Wang, Li Yu (2019)

Kybernetika

This paper presents speed regulation issue of Permanent Magnet Synchronous Motor (PMSM) using a composite integral terminal sliding mode control scheme via a disturbance compensation technique. The PMSM q -axis and d -axis subsystems are firstly transformed into two linear subsystems by using feedback linearization technique, then, integral terminal sliding mode controller and finite-time controller are designed respectively. The proof of finite time stability are given for the PMSM closed-loop system....

Disturbance observer-based second order sliding mode attitude tracking control for flexible spacecraft

Chutiphon Pukdeboon, Anuchit Jitpattanakul (2017)

Kybernetika

This paper presents a composite controller that combines nonlinear disturbance observer and second order sliding mode controller for attitude tracking of flexible spacecraft. First, a new nonsingular sliding surface is introduced. Then, a second order sliding mode attitude controller is designed to achieve high-precision tracking performance. An extended state observer is also developed to estimate the total disturbance torque consisting of environmental disturbances, system uncertainties and flexible...

Domaine de victoire et stratégies viables chez les pêcheurs décrits par l'anthropologue Fredrik Barth

Noël Bonneuil, Patrick Saint-Pierre (1998)

Mathématiques et Sciences Humaines

L'anthropologue Fredrik Barth a analysé l'émergence des formes sociales chez les pêcheurs norvégiens. Sa perspective est bien modélisée par les outils mathématiques de la théorie de la viabilité, grâce auxquels on peut calculer l'ensemble des états à partir desquels la survie du système est encore possible, ainsi que la bonne décision à prendre à chaque instant, entre explorer ou suivre les autres bateaux. En outre, il se trouve que, techniquement, la condition de compacité des images de la correspondance...

Currently displaying 141 – 160 of 199