Displaying 261 – 280 of 576

Showing per page

Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients

Anna Doubova, A. Osses, J.-P. Puel (2002)

ESAIM: Control, Optimisation and Calculus of Variations

The results of this paper concern exact controllability to the trajectories for a coupled system of semilinear heat equations. We have transmission conditions on the interface and Dirichlet boundary conditions at the external part of the boundary so that the system can be viewed as a single equation with discontinuous coefficients in the principal part. Exact controllability to the trajectories is proved when we consider distributed controls supported in the part of the domain where the diffusion...

Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients

Anna Doubova, A. Osses, J.-P. Puel (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The results of this paper concern exact controllability to the trajectories for a coupled system of semilinear heat equations. We have transmission conditions on the interface and Dirichlet boundary conditions at the external part of the boundary so that the system can be viewed as a single equation with discontinuous coefficients in the principal part. Exact controllability to the trajectories is proved when we consider distributed controls supported in the part of the domain where the diffusion...

Exact Neumann boundary controllability for second order hyperbolic equations

Weijiu Liu, Graham Williams (1998)

Colloquium Mathematicae

Using HUM, we study the problem of exact controllability with Neumann boundary conditions for second order hyperbolic equations. We prove that these systems are exactly controllable for all initial states in L 2 ( Ω ) × ( H 1 ( Ω ) ) ' and we derive estimates for the control time T.

Exact null controllability of structurally damped and thermo-elastic parabolic models

Irena Lasiecka, Roberto Triggiani (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We show exact null-controllability for two models of non-classical, parabolic partial differential equations with distributed control: (i) second-order structurally damped equations, except for a limit case, where exact null controllability fails; and (ii) thermo-elastic equations with hinged boundary conditions. In both cases, the problem is solved by duality.

Exact null internal controllability for the heat equation on unbounded convex domains

Viorel Barbu (2014)

ESAIM: Control, Optimisation and Calculus of Variations

The liner parabolic equation y t - 1 2 𝔻 y + F · y = 1 0 u ∂y ∂t − 1 2   Δy + F · ∇ y = 1 x1d4aa; 0 u with Neumann boundary condition on a convex open domain x1d4aa; ⊂ ℝd with smooth boundary is exactly null controllable on each finite interval if 𝒪0is an open subset of x1d4aa; which contains a suitable neighbourhood of the recession cone of x1d4aa; . Here,F : ℝd → ℝd is a bounded, C1-continuous function, and F = ∇g, where g is convex and coercive.

Existence and controllability for nondensely defined partial neutral functional differential inclusions

Khalil Ezzinbi, Soumia Lalaoui Rhali (2015)

Applications of Mathematics

We give sufficient conditions for the existence of integral solutions for a class of neutral functional differential inclusions. The assumptions on the generator are reduced by considering nondensely defined Hille-Yosida operators. Existence and controllability results are established by combining the theory of addmissible multivalued contractions and Frigon's fixed point theorem. These results are applied to a neutral partial differential inclusion with diffusion.

Existence and controllability of fractional-order impulsive stochastic system with infinite delay

Toufik Guendouzi (2013)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

This paper is concerned with the existence and approximate controllability for impulsive fractional-order stochastic infinite delay integro-differential equations in Hilbert space. By using Krasnoselskii's fixed point theorem with stochastic analysis theory, we derive a new set of sufficient conditions for the approximate controllability of impulsive fractional stochastic system under the assumption that the corresponding linear system is approximately controllable. Finally, an example is provided...

Existence of solutions and approximate controllability of impulsive fractional stochastic differential systems with infinite delay and Poisson jumps

Chinnathambi Rajivganthi, Krishnan Thiagu, Palanisamy Muthukumar, Pagavathigounder Balasubramaniam (2015)

Applications of Mathematics

The paper is motivated by the study of interesting models from economics and the natural sciences where the underlying randomness contains jumps. Stochastic differential equations with Poisson jumps have become very popular in modeling the phenomena arising in the field of financial mathematics, where the jump processes are widely used to describe the asset and commodity price dynamics. This paper addresses the issue of approximate controllability of impulsive fractional stochastic differential...

Existence results for ϕ-Laplacian Dirichlet BVP of differential inclusions with application to control theory

Smaïl Djebali, Abdelghani Ouahab (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we study ϕ-Laplacian problems for differential inclusions with Dirichlet boundary conditions. We prove the existence of solutions under both convexity and nonconvexity conditions on the multi-valued right-hand side. The nonlinearity satisfies either a Nagumo-type growth condition or an integrably boundedness one. The proofs rely on the Bonhnenblust-Karlin fixed point theorem and the Bressan-Colombo selection theorem respectively. Two applications to a problem from control theory are...

Forward invariant sets, homogeneity and small-time local controllability

Mikhail Krastanov (1995)

Banach Center Publications

The property of forward invariance of a subset of R n with respect to a differential inclusion is characterized by using the notion of a perpendicular to a set. The obtained results are applied for investigating the dependence of the small-time local controllability of a homogeneous control system on parameters.

Generalized differential equations in the space of regulated functions (boundary value problems and controllability)

Milan Tvrdý (1991)

Mathematica Bohemica

Boundary value problems for generalized linear differential equations and the corresponding controllability problems are dealt with. The adjoint problems are introduced in such a way that the usual duality theorems are valid. As a special case the interface boundary value problems are included. In contrast to the earlier papers by the author the right-hand side of the generalized differential equations as well as the solutions of this equation can be in general regulated functions (not necessarily...

Currently displaying 261 – 280 of 576