Displaying 361 – 380 of 576

Showing per page

Null-control and measurable sets

Jone Apraiz, Luis Escauriaza (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the interior and boundary null-controllability of some parabolic evolutions with controls acting over measurable sets.

Null-controllability of some systems of parabolic type by one control force

Farid Ammar Khodja, Assia Benabdallah, Cédric Dupaix, Ilya Kostin (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We study the null controllability by one control force of some linear systems of parabolic type. We give sufficient conditions for the null controllability property to be true and, in an abstract setting, we prove that it is not always possible to control.

Null-controllability of some systems of parabolic type by one control force

Farid Ammar Khodja, Assia Benabdallah, Cédric Dupaix, Ilya Kostin (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the null controllability by one control force of some linear systems of parabolic type. We give sufficient conditions for the null controllability property to be true and, in an abstract setting, we prove that it is not always possible to control.

Numerical controllability of the wave equation through primal methods and Carleman estimates

Nicolae Cîndea, Enrique Fernández-Cara, Arnaud Münch (2013)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with the numerical computation of boundary null controls for the 1D wave equation with a potential. The goal is to compute approximations of controls that drive the solution from a prescribed initial state to zero at a large enough controllability time. We do not apply in this work the usual duality arguments but explore instead a direct approach in the framework of global Carleman estimates. More precisely, we consider the control that minimizes over the class of admissible null...

Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems

Mihai Bostan (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The topic of this paper is the numerical analysis of time periodic solution for electro-magnetic phenomena. The Limit Absorption Method (LAM) which forms the basis of our study is presented. Theoretical results have been proved in the linear finite dimensional case. This method is applied to scattering problems and transport of charged particles.

Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems

Mihai Bostan (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The topic of this paper is the numerical analysis of time periodic solution for electro-magnetic phenomena. The Limit Absorption Method (LAM) which forms the basis of our study is presented. Theoretical results have been proved in the linear finite dimensional case. This method is applied to scattering problems and transport of charged particles.

Observability inequalities and measurable sets

Jone Apraiz, Luis Escauriaza, Gengsheng Wang, C. Zhang (2014)

Journal of the European Mathematical Society

This paper presents two observability inequalities for the heat equation over Ω × ( 0 , T ) . In the first one, the observation is from a subset of positive measure in Ω × ( 0 , T ) , while in the second, the observation is from a subset of positive surface measure on Ω × ( 0 , T ) . It also proves the Lebeau-Robbiano spectral inequality when Ω is a bounded Lipschitz and locally star-shaped domain. Some applications for the above-mentioned observability inequalities are provided.

Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element method on nonuniform meshes

Sylvain Ervedoza (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this article is to analyze the observability properties for a space semi-discrete approximation scheme derived from a mixed finite element method of the 1d wave equation on nonuniform meshes. More precisely, we prove that observability properties hold uniformly with respect to the mesh-size under some assumptions, which, roughly, measures the lack of uniformity of the meshes, thus extending the work [Castro and Micu, Numer. Math.102 (2006) 413–462] to nonuniform meshes. Our results...

On a class of linear delay systems often arising in practice

Michel Fliess, Hugues Mounier (2001)

Kybernetika

We study the tracking control of linear delay systems. It is based on an algebraic property named π -freeness, which extends Kalman’s finite dimensional linear controllability and bears some similarity with finite dimensional nonlinear flat systems. Several examples illustrate the practical relevance of the notion.

On application of Rothe's fixed point theorem to study the controllability of fractional semilinear systems with delays

Beata Sikora (2019)

Kybernetika

The paper presents finite-dimensional dynamical control systems described by semilinear fractional-order state equations with multiple delays in the control and nonlinear function f . The relative controllability of the presented semilinear system is discussed. Rothe’s fixed point theorem is applied to study the controllability of the fractional-order semilinear system. A control that steers the semilinear system from an initial complete state to a final state at time t > 0 is presented. A numerical...

On asymptotic exit-time control problems lacking coercivity

M. Motta, C. Sartori (2014)

ESAIM: Control, Optimisation and Calculus of Variations

The research on a class of asymptotic exit-time problems with a vanishing Lagrangian, begun in [M. Motta and C. Sartori, Nonlinear Differ. Equ. Appl. Springer (2014).] for the compact control case, is extended here to the case of unbounded controls and data, including both coercive and non-coercive problems. We give sufficient conditions to have a well-posed notion of generalized control problem and obtain regularity, characterization and approximation results for the value function of the problem....

On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations

Jérôme Le Rousseau, Gilles Lebeau (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation...

On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations∗∗∗

Jérôme Le Rousseau, Gilles Lebeau (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation...

On constrained controllability of dynamical systems with multiple delays in control

Beata Sikora (2005)

Applicationes Mathematicae

Linear, continuous dynamical systems with multiple delays in control are studied. Their relative and absolute controllability with constrained control is discussed. Definitions of various types of constrained relative and absolute controllability for linear systems with delays in control are introduced. Criteria of relative and absolute controllability with constrained control are established. Constraints on control values are considered. Mutual implications between constrained relative controllability...

Currently displaying 361 – 380 of 576