Co to je teorie životaschopnosti
The contactless nature of active magnetic bearings brings about many advantages over the conventional bearing while industrial real-time applications are often limited by the significant complexity of control algorithms. This paper presents the application of an LQ controller to an active magnetic bearing system (AMB). Two control strategies are presented and compared: local and global. In the first case the rotor is modelled as two separated masses located at the bearing. In the second case rotor...
In iterative learning control (ILC) and in repetitive control (RC) one is interested in convergence to zero tracking error as the repetitions of the command or the periods in the command progress. A condition based on steady state frequency response modeling is often used, but it does not represent the true stability boundary for convergence. In this paper we show how this useful condition differs from the true stability boundary in ILC and RC, and show that in applications of RC the distinction...
A generalized structure of complementary matrices involved in the input-state- output Inclusion Principle for linear time-invariant systems (LTI) including contractibility conditions for static state feedback controllers is well known. In this paper, it is shown how to further extend this structure in a systematic way when considering contractibility of dynamic controllers. Necessary and sufficient conditions for contractibility are proved in terms of both unstructured and block structured complementary...
In this article, we present a detailed study of the complex calculus of variations introduced in [M. Gondran: Calcul des variations complexe et solutions explicites d’équations d’Hamilton–Jacobi complexes. C.R. Acad. Sci., Paris 2001, t. 332, série I]. This calculus is analogous to the conventional calculus of variations, but is applied here to functions in . It is based on new concepts involving the minimum and convexity of a complex function. Such an approach allows us to propose explicit solutions...
The problem of computing minimal realizations of a singular system decomposed into a standard dynamical system and a static system of a given improper transfer matrix is formulated and solved. A new notion of the minimal dynamical-static realization is introduced. It is shown that there always exists a minimal dynamical-static realization of a given improper transfer matrix. A procedure for the computation of a minimal dynamical-static realization for a given improper transfer matrix is proposed...
Any successful company must react quickly to changing trends in the market. New products should be designed and manufactured quicker and cheaper than counter partners do. A shorter design time provides a distinct competitive advantage. The paper describes two approaches towards designing interdisciplinary mechatronic systems: the first is visual modelling with the UML, the second is physical modelling with Modelica.
Asymptotic stability of models of 2D continuous-discrete linear systems is considered. Computer methods for investigation of the asymptotic stability of the Roesser type model are given. The methods require computation of eigenvalue-loci of complex matrices or evaluation of complex functions. The effectiveness of the stability tests is demonstrated on numerical examples.
We address the numerically reliable computation of generalized inverses of rational matrices in descriptor state-space representation. We put particular emphasis on two classes of inverses: the weak generalized inverse and the Moore-Penrose pseudoinverse. By combining the underlying computational techniques, other types of inverses of rational matrices can be computed as well. The main computational ingredient to determine generalized inverses is the orthogonal reduction of the system matrix pencil...
This paper presents an algebraic design theory for interconnected systems. Usual multivariable linear systems are described in a unified way. Both square and nonsquare plants and controllers are included in the study and an easy characterization of the achievable I/O (input-to-output) and D/O (disturbance-to-output) maps is presented through the use of appropriate controllers. Sufficient conditions of stability are given.
The paper presents fractional-order semilinear, continuous, finite-dimensional dynamical systems with multiple delays both in controls and nonlinear function . The constrained relative controllability of the presented semilinear system and corresponding linear one are discussed. New criteria of constrained relative controllability for the fractional semilinear systems with delays under assumptions put on the control values are established and proved. The conical type constraints are considered....
The left-invariant sub-Riemannian problem on the group of motions (rototranslations) of a plane SE(2) is studied. Local and global optimality of extremal trajectories is characterized. Lower and upper bounds on the first conjugate time are proved. The cut time is shown to be equal to the first Maxwell time corresponding to the group of discrete symmetries of the exponential mapping. Optimal synthesis on an open dense subset of the state space is described.
The paper presents an algorithm for the solution of the consensus problem of a linear multi-agent system composed of identical agents. The control of the agents is delayed, however, these delays are, in general, not equal in all agents. The control algorithm design is based on the -control, the results are formulated by means of linear matrix inequalities. The dimension of the resulting convex optimization problem is proportional to the dimension of one agent only but does not depend on the number...
The problem of stabilization of large-scale systems and the consensus problem of multi-agent systems are related, similar tools for their solution are used. Therefore, they are occasionally confused. Although both problems show similar features, one can also observe important differences. A comparison of both problems is presented in this paper. In both cases, attention is paid to the explanation of the effects of the time delays. The most important fact is that, if the time delays are heterogeneous,...