The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We discuss a control problem for the Lamé system which naturally leads to the following uniqueness problem: Given a bounded domain of , are there non-trivial solutions of the evolution Lamé system with homogeneous Dirichlet boundary conditions for which the first two components vanish? We show that such solutions do not exist when the domain is Lipschitz. However, in two space dimensions one can build easily polygonal domains in which there are eigenvibrations with the first component being identically...
In this paper we discuss two closely related problems arising in environmental monitoring. The first is the source localization problem linked to the question How can one find an unknown "contamination source"? The second is an associated sensor placement problem: Where should we place sensors that are capable of providing the necessary "adequate data" for that? Our approach is based on some concepts and ideas developed in mathematical control theory of partial differential equations.
In this paper we show how to find convenient boundary actuators, termed boundary efficient actuators, ensuring finite-time space compensation of any boundary disturbance. This is the so-called remediability problem. Then we study the relationship between this remediability notion and controllability by boundary actuators, and hence the relationship between boundary strategic and boundary efficient actuators. We also determine the set of boundary remediable disturbances, and for a boundary disturbance,...
The problem of boundary stabilization for the isotropic linear
elastodynamic system and the wave equation with Ventcel's
conditions are considered (see [12]). The boundary
observability and the exact controllability were etablished in [11]. We prove here the enegy decay to zero for the elastodynamic
system with stationary Ventcel's conditions by introducing a
nonlinear boundary feedback. We also give a boundary feedback
leading to arbitrarily large energy decay rates for the
elastodynamic system...
On s'intéresse dans cet article, a la stabilisation de l'équation des ondes dans un domaine extérieur avec condition de Dirichlet...
Dans ce travail, nous étudions une équation des poutres d’Euler-Bernoulli, on contrôle par combinaison linéaire de vitesse et vitesse de rotation appliquées à l’une des extrémités du système. Tout d’abord nous montrons que le problème est bien posé et qu’il y a stabilité uniforme sous certaines conditions portant sur les coefficients de feedback. Puis nous estimons le taux optimal de décroissance de l’énergie du système par la méthode de Shkalikov.
We consider a tank containing a fluid. The tank is subjected to a one-dimensional horizontal move and the motion of the fluid is described by the shallow water equations. By means of a Lyapunov approach, we deduce control laws to stabilize the fluid's state and the tank's position. Although global asymptotic stability is yet to be proved, we numerically simulate the system and observe the stabilization for different control situations.
We introduce a model of a vibrating multidimensional structure made of a n-dimensional body and a one-dimensional rod. We actually consider the anisotropic elastodynamic system in the n-dimensional body and the Euler-Bernouilli beam in the one-dimensional rod. These equations are coupled via their boundaries. Using appropriate feedbacks on a part of the boundary we show the exponential decay of the energy of the system.
For a hybrid system composed of a cable with masses at both ends,
we prove the existence of solutions for a class of nonlinear and
nonmonotone feedback laws by means of a priori estimates. Assuming
some local monotonicity, strong stabilization
is obtained thanks to some Riemann's invariants technique and La
Salle's principle.
We consider abstract second order evolution equations with unbounded
feedback with delay. Existence results are obtained under some
realistic assumptions. Sufficient and explicit conditions are derived that guarantee the exponential or polynomial stability. Some new examples that enter into our abstract framework are presented.
We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the above-mentioned...
We intend to conduct a fairly complete study on
Timoshenko beams with pointwise feedback controls and seek to obtain information
about the eigenvalues, eigenfunctions, Riesz-Basis-Property,
spectrum-determined-growth-condition, energy decay rate and various stabilities
for the beams. One major difficulty of the present problem is the non-simplicity
of the eigenvalues.
In fact, we shall indicate in this paper situations where the multiplicity of
the eigenvalues is at least two. We build all the...
Let be a parabolic second order differential operator on the domain Given a function and such that the support of is contained in , we let be the solution to the equation:Given positive bounds we seek a function with support in such that the corresponding solution satisfies:We prove in this article that, under some regularity conditions on the coefficients of continuous solutions are unique and dense in the sense that can be -approximated, but an exact solution does not...
Let L be a parabolic second order differential operator on the domain Given a function and such that the support of û is
contained in , we let be the solution to the equation:
Given positive bounds we seek a function u with support
in such that the corresponding solution y
satisfies:
We prove in this article that, under some regularity conditions on the
coefficients of L, continuous solutions are unique and dense in the sense
that can be C0-approximated, but an
exact solution...
Currently displaying 21 –
40 of
46