Displaying 401 – 420 of 2294

Showing per page

Chaos synchronization of TSUCS unified chaotic system, a modified function projective control method

Hamed Tirandaz (2018)

Kybernetika

The synchronization problem of the three-scroll unified chaotic system (TSUCS) is studied in this paper. A modified function projective synchronization (MFPS) method is developed to achieve this goal. Furthermore, the only parameter of the TSUCS unified chaotic system is considered unknown and estimated with an appropriate parameter estimation law. MFPS method is investigated for both identical and non-identical chaotic systems. Lyapunov stability theorem is utilized to verify the proposed feedback...

Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium

Zhouchao Wei, Zhen Wang (2013)

Kybernetika

By introducing a feedback control to a proposed Sprott E system, an extremely complex chaotic attractor with only one stable equilibrium is derived. The system evolves into periodic and chaotic behaviors by detailed numerical as well as theoretical analysis. Analysis results show that chaos also can be generated via a period-doubling bifurcation when the system has one and only one stable equilibrium. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived...

Characterization of generic properties of linear structured systems for efficient computations

Christian Commault, Jean-Michel Dion, Jacob W. van der Woude (2002)

Kybernetika

In this paper we investigate some of the computational aspects of generic properties of linear structured systems. In such systems only the zero/nonzero pattern of the system matrices is assumed to be known. For structured systems a number of characterizations of so-called generic properties have been obtained in the literature. The characterizations often have been presented by means of the graph associated to a linear structured system and are then expressed in terms of the maximal or minimal...

Circle criterion and boundary control systems in factor form: input-output approach

Piotr Grabowski, Frank Callier (2001)

International Journal of Applied Mathematics and Computer Science

A circle criterion is obtained for a SISO Lur’e feedback control system consist- ing of a nonlinear static sector-type controller and a linear boundary control system in factor form on an infinite-dimensional Hilbert state space H previ- ously introduced by the authors (Grabowski and Callier, 1999). It is assumed for the latter that (a) the observation functional is infinite-time admissible, (b) the factor control vector satisfies a compatibility condition, and (c) the trans- fer function belongs...

Closed-loop structure of decouplable linear multivariable systems

Javier Ruiz, Jorge Luis Orozco, Ofelia Begovich (2005)

Kybernetika

Considering a controllable, square, linear multivariable system, which is decouplable by static state feedback, we completely characterize in this paper the structure of the decoupled closed-loop system. The family of all attainable transfer function matrices for the decoupled closed-loop system is characterized, which also completely establishes all possible combinations of attainable finite pole and zero structures. The set of assignable poles as well as the set of fixed decoupling poles are determined,...

Colored decision process Petri nets: modeling, analysis and stability

Julio Clempner (2005)

International Journal of Applied Mathematics and Computer Science

In this paper we introduce a new modeling paradigm for developing a decision process representation called the Colored Decision Process Petri Net (CDPPN). It extends the Colored Petri Net (CPN) theoretic approach including Markov decision processes. CPNs are used for process representation taking advantage of the formal semantic and the graphical display. A Markov decision process is utilized as a tool for trajectory planning via a utility function. The main point of the CDPPN is its ability to...

Combining odometry and visual loop-closure detection for consistent topo-metrical mapping

S. Bazeille, D. Filliat (2010)

RAIRO - Operations Research - Recherche Opérationnelle

We address the problem of simultaneous localization and mapping (SLAM) by combining visual loop-closure detection with metrical information given by a robot odometry. The proposed algorithm extends a purely appearance-based loop-closure detection method based on bags of visual words [A. Angeli, D. Filliat, S. Doncieux and J.-A. Meyer, IEEE Transactions On Robotics, Special Issue on Visual SLAM 24 (2008) 1027–1037], which is able to detect when the robot has returned back to a previously visited...

Combining Odometry and Visual Loop-Closure Detection for Consistent Topo-Metrical Mapping

S. Bazeille, D. Filliat (2011)

RAIRO - Operations Research

We address the problem of simultaneous localization and mapping (SLAM) by combining visual loop-closure detection with metrical information given by a robot odometry. The proposed algorithm extends a purely appearance-based loop-closure detection method based on bags of visual words [A. Angeli, D. Filliat, S. Doncieux and J.-A. Meyer, IEEE Transactions On Robotics, Special Issue on Visual SLAM24 (2008) 1027–1037], which is able to detect when the robot has returned back to a previously visited...

Compact Global Chaotic Attractors of Discrete Control Systems

David Cheban (2014)

Nonautonomous Dynamical Systems

The paper is dedicated to the study of the problem of existence of compact global chaotic attractors of discrete control systems and to the description of its structure. We consider so called switched systems with discrete time xn+1 = fν(n)(xn), where ν : ℤ+ ⃗ {1,2,...,m}. If m ≥ 2 we give sufficient conditions (the family M := {f1,f2,...,fm} of functions is contracting in the extended sense) for the existence of a compact global chaotic attractor. We study this problem in the framework of non-autonomous...

Comparative analysis of noise robustness of type 2 fuzzy logic controllers

Emanuel Ontiveros-Robles, Patricia Melin, Oscar Castillo (2018)

Kybernetika

Nowadays Fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages as its robustness. However, the Type-2 Fuzzy Logic approach, allows managing uncertainty in the model. Type-2 Fuzzy Logic has recently shown to provide significant improvement in image processing applications, however it is also important to analyze its impact in controller performance. This paper is presenting a comparison in the robustness of Interval Type-2 and Generalized...

Comparison of active control techniques over a dihedral plane

Emmanuel Creusé (2001)

ESAIM: Control, Optimisation and Calculus of Variations

This work is devoted to the numerical comparison of four active control techniques in order to increase the pressure recovery generated by the deceleration of a slightly compressible viscous flow over a dihedral plane. It is performed by the use of vortex generator jets and intrusive sensors. The governing equations, the two-dimensional direct numerical simulation code and the flow configuration are first briefly recalled. Then, the objective of the control is carefully displayed, and the uncontrolled...

Currently displaying 401 – 420 of 2294