Displaying 41 – 60 of 125

Showing per page

Design of an adaptive controller of LQG type: spline-based approach

Tatiana V. Guy, Miroslav Kárný (2000)

Kybernetika

The paper presents an alternative approach to the design of a hybrid adaptive controller of Linear Quadratic Gaussian (LQG) type for linear stochastic controlled system. The approach is based on the combination standard building blocks of discrete LQG adaptive controller with the non-standard technique of modelling of a controlled system and spline approximation of involved signals. The method could be of interest for control of systems with complex models, in particular distributed parameter systems....

Design of linear feedback for bilinear control systems

Vasiliy Belozyorov (2002)

International Journal of Applied Mathematics and Computer Science

Sufficient conditions for the conditional stability of trivial solutions for quadratic systems of ordinary differential equations are obtained. These conditions are then used to design linear control laws on the output for a bilinear system of any order. In the case of a homogeneous system, a domain of the conditional stability is also indicated (it is a cone). Some examples are given.

Design of microprogrammed controllers to be implemented in FPGAs

Remigiusz Wiśniewski, Alexander Barkalov, Larisa Titarenko, Wolfgang A. Halang (2011)

International Journal of Applied Mathematics and Computer Science

In the article we propose a new design method for microprogrammed controllers. The traditional structure is improved by modifying internal modules and connections. Such a solution allows reducing the total number of logic elements needed for implementation in programmable structures, especially Field Programmable Gate Arrays (FPGAs). Detailed results of experiments show that on the average the application of the proposed methods yields up to 30% savings as far as the destination device is considered....

Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory

Abdel-Razzak Merheb, Hassan Noura, François Bateman (2015)

International Journal of Applied Mathematics and Computer Science

In this paper, sliding mode control is used to develop two passive fault tolerant controllers for an AscTec Pelican UAV quadrotor. In the first approach, a regular sliding mode controller (SMC) augmented with an integrator uses the robustness property of variable structure control to tolerate partial actuator faults. The second approach is a cascaded sliding mode controller with an inner and outer SMC loops. In this configuration, faults are tolerated in the fast inner loop controlling the velocity...

Design of predictive LQ controller

Miroslav Fikar, Sebastian Engell, Petr Dostál (1999)

Kybernetika

A single variable controller is developed in the predictive control framework based upon minimisation of the LQ criterion with infinite output and control horizons. The infinite version of the predictive cost function results in better stability properties of the controller and still enables to incorporate constraints into the control design. The constrained controller consists of two parts: time-invariant nominal LQ controller and time-variant part given by Youla–Kučera parametrisation of all stabilising...

Design of reaching phase for variable structure controller based on Householder transformation

Goshaidas Ray, Sitansu Dey, T. K. Bhattacharyya (2005)

Kybernetika

The paper presents control signals generation methods, preventing the excitation of residual vibration in slightly damped oscillational systems. It is focused on the feedforward methods, as most of the vibrations in examined processes are induced by the control, while the influence of disturbances is mostly negligible. Application of these methods involves ensuring of the insensitivity to natural frequency change, which can be reached in classical approach only by considerable increase of transient...

Design of reaching phase for variable structure controller based on SVD method

Goshaidas Ray, Sitansu Dey (2004)

Kybernetika

This paper considers a design of variable structure with sliding mode controller for a class of uncertain dynamic system based on Singular Value Decomposition (SVD) method. The proposed method reduces the number of switching gain vector components and performs satisfactorily while the external disturbance does not satisfy the matching conditions. Subsequently the stability of the global system is studied and furthermore, the design of switched gain matrix elements based on fuzzy logic approach provides...

Design of robust output affine quadratic controller

Vojtech Veselý (2004)

Kybernetika

The paper addresses the problem robust output feedback controller design with guaranteed cost and affine quadratic stability for linear continuous time affine systems. The proposed design method leads to a non-iterative LMI based algorithm. A numerical example is given to illustrate the design procedure.

Design of the state predictive model following control system with time-delay

Dazhong Wang, Shujing Wu, Shigenori Okubo (2009)

International Journal of Applied Mathematics and Computer Science

Time-delay systems exist in many engineering fields such as transportation systems, communication systems, process engineering and, more recently, networked control systems. It usually results in unsatisfactory performance and is frequently a source of instability, so the control of time-delay systems is practically important. In this paper, a design of the state predictive model following control system (PMFCS) with time-delay is discussed. The bounded property of the internal states for the control...

Design of unknown input fractional-order observers for fractional-order systems

Ibrahima N'Doye, Mohamed Darouach, Holger Voos, Michel Zasadzinski (2013)

International Journal of Applied Mathematics and Computer Science

This paper considers a method of designing fractional-order observers for continuous-time linear fractional-order systems with unknown inputs. Conditions for the existence of these observers are given. Sufficient conditions for the asymptotical stability of fractional-order observer errors with the fractional order α satisfying 0 < α < 2 are derived in terms of linear matrix inequalities. Two numerical examples are given to demonstrate the applicability of the proposed approach, where the...

Designing a ship course controller by applying the adaptive backstepping method

Anna Witkowska, Roman Śmierzchalski (2012)

International Journal of Applied Mathematics and Computer Science

The article discusses the problem of designing a proper and efficient adaptive course-keeping control system for a seagoing ship based on the adaptive backstepping method. The proposed controller in the design stage takes into account the dynamic properties of the steering gear and the full nonlinear static maneuvering characteristic. The adjustable parameters of the achieved nonlinear control structure were tuned up by using the genetic algorithm in order to optimize the system performance. A realistic...

Detection and accommodation of second order distributed parameter systems with abrupt changes in input term: stability and adaptation

Michael A. Demetriou, Marios M. Polycarpou (1998)

Kybernetika

In this note, we employ nonlinear on-line parameter estimation methods based on adaptive neural network approximators for detecting changes due to actuator faults in a class of second order distributed parameter systems. The motivating example is a cantilevered beam actuated via a pair of piezoceramic patches. We examine changes in the control input term, which provide a simple and practical model of actuator failures. Using Lyapunov redesign methods, a stable learning scheme for fault diagnosis...

Detection and accommodation of second order distributed parameter systems with abrupt changes in input term: Existence and approximation

Michael A. Demetriou, Azmy S. Ackleh, Simeon Reich (2000)

Kybernetika

The purpose of this note is to investigate the existence of solutions to a class of second order distributed parameter systems with sudden changes in the input term. The class of distributed parameter systems under study is often encountered in flexible structures and structure-fluid interaction systems that use smart actuators. A failure in the actuator is modeled as either an abrupt or an incipient change of the actuator map whose magnitude is a function of the measurable output. A Galerkin-based...

Detection and identification of loss of efficiency faults of flight actuators

Daniel Ossmann, Andreas Varga (2015)

International Journal of Applied Mathematics and Computer Science

We propose linear parameter-varying (LPV) model-based approaches to the synthesis of robust fault detection and diagnosis (FDD) systems for loss of efficiency (LOE) faults of flight actuators. The proposed methods are applicable to several types of parametric (or multiplicative) LOE faults such as actuator disconnection, surface damage, actuator power loss or stall loads. For the detection of these parametric faults, advanced LPV-model detection techniques are proposed, which implicitly provide...

Currently displaying 41 – 60 of 125