Displaying 61 – 80 of 215

Showing per page

Continuous feedback stabilization for a class of affine stochastic nonlinear systems

Mohamed Oumoun, Lahcen Maniar, Abdelghafour Atlas (2020)

Kybernetika

We investigate the state feedback stabilization, in the sense of weak solution, of nonlinear stochastic systems when the drift is quadratic in the control and the diffusion term is affine in the control. Based on the generalised stochastic Lyapunov theorem, we derive the necessary conditions and the sufficient conditions, respectively, for the global asymptotic stabilization in probability by a continuous feedback explicitly computed. The interest of this work is that the existing control methods...

Continuous-time input-output decoupling for sampled-data systems

Osvaldo Maria Grasselli, Laura Menini (1999)

Kybernetika

The problem of obtaining a continuous-time (i. e., ripple-free) input-output decoupled control system for a continuous-time linear time-invariant plant, by means of a purely discrete-time compensator, is stated and solved in the case of a unity feedback control system. Such a control system is hybrid, since the plant is continuous-time and the compensator is discrete-time. A necessary and sufficient condition for the existence of a solution of such a problem is given, which reduces the mentioned...

Continuous-time periodic systems in H 2 and H . Part I: Theoretical aspects

Patrizio Colaneri (2000)

Kybernetika

The paper is divided in two parts. In the first part a deep investigation is made on some system theoretical aspects of periodic systems and control, including the notions of H 2 and H norms, the parametrization of stabilizing controllers, and the existence of periodic solutions to Riccati differential equations and/or inequalities. All these aspects are useful in the second part, where some parametrization and control problems in H 2 and H are introduced and solved.

Continuous-time periodic systems in H 2 and H . Part II: State feedback problems

Patrizio Colaneri (2000)

Kybernetika

This paper deals with some state-feedback H 2 / H control problems for continuous time periodic systems. The derivation of the theoretical results underlying such problems has been presented in the first part of the paper. Here, the parametrization and optimization problems in H 2 , H and mixed H 2 / H are introduced and solved.

Control error dynamic modification as an efficient tool for reduction of effects introduced by actuator constraints

Krzysztof B. Janiszowski (2009)

International Journal of Applied Mathematics and Computer Science

A modification of digital controller algorithms, based on the introduction of a virtual reference value, which never exceeds active constraints in the actuator output is presented and investigated for some algorithms used in single-loop control systems. This idea, derived from virtual modification of a control error, can be used in digital control systems subjected to both magnitude and rate constraints. The modification is introduced in the form of on-line adaptation to the control task. Hence...

Control in obstacle-pseudoplate problems with friction on the boundary. optimal design and problems with uncertain data

Ivan Hlaváček, Ján Lovíšek (2001)

Applicationes Mathematicae

Four optimal design problems and a weight minimization problem are considered for elastic plates with small bending rigidity, resting on a unilateral elastic foundation, with inner rigid obstacles and a friction condition on a part of the boundary. The state problem is represented by a variational inequality and the design variables influence both the coefficients and the set of admissible state functions. If some input data are allowed to be uncertain a new method of reliable solutions is employed....

Control Lyapunov functions and stabilization by means of continuous time-varying feedback

Iasson Karafyllis, John Tsinias (2009)

ESAIM: Control, Optimisation and Calculus of Variations

For a general time-varying system, we prove that existence of an “Output Robust Control Lyapunov Function” implies existence of continuous time-varying feedback stabilizer, which guarantees output asymptotic stability with respect to the resulting closed-loop system. The main results of the present work constitute generalizations of a well known result due to Coron and Rosier [J. Math. Syst. Estim. Control 4 (1994) 67–84] concerning stabilization of autonomous systems by means of time-varying periodic...

Control Lyapunov functions and stabilization by means of continuous time-varying feedback

Iasson Karafyllis, John Tsinias (2008)

ESAIM: Control, Optimisation and Calculus of Variations

For a general time-varying system, we prove that existence of an “Output Robust Control Lyapunov Function” implies existence of continuous time-varying feedback stabilizer, which guarantees output asymptotic stability with respect to the resulting closed-loop system. The main results of the present work constitute generalizations of a well known result due to Coron and Rosier [J. Math. Syst. Estim. Control4 (1994) 67–84] concerning stabilization of autonomous systems by means of time-varying...

Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems

ludovic faubourg, jean-baptiste pomet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper presents a method to design explicit control Lyapunov functions for affine and homogeneous systems that satisfy the so-called “Jurdjevic-Quinn conditions”. For these systems a positive definite function V0 is known that can only be made non increasing by feedback. We describe how a control Lyapunov function can be obtained via a deformation of this “weak” Lyapunov function. Some examples are presented, and the linear quadratic situation is treated as an illustration.

Control Norms for Large Control Times

Sergei Ivanov (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A control system of the second order in time with control u = u ( t ) L 2 ( [ 0 , T ] ; U ) is considered. If the system is controllable in a strong sense and uT is the control steering the system to the rest at time T, then the L2–norm of uT decreases as 1 / T while the L 1 ( [ 0 , T ] ; U ) –norm of uT is approximately constant. The proof is based on the moment approach and properties of the relevant exponential family. Results are applied to the wave equation with boundary or distributed controls.

Control of a clamped-free beam by a piezoelectric actuator

Emmanuelle Crépeau, Christophe Prieur (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a controllability problem for a beam, clamped at one boundary and free at the other boundary, with an attached piezoelectric actuator. By Hilbert Uniqueness Method (HUM) and new results on diophantine approximations, we prove that the space of exactly initial controllable data depends on the location of the actuator. We also illustrate these results with numerical simulations.

Control of a class of chaotic systems by a stochastic delay method

Lan Zhang, Cheng Jian Zhang, Dongming Zhao (2010)

Kybernetika

A delay stochastic method is introduced to control a certain class of chaotic systems. With the Lyapunov method, a suitable kind of controllers with multiplicative noise is designed to stabilize the chaotic state to the equilibrium point. The method is simple and can be put into practice. Numerical simulations are provided to illustrate the effectiveness of the proposed controllable conditions.

Control of a team of mobile robots based on non-cooperative equilibria with partial coordination

Krzysztof Skrzypczyk (2005)

International Journal of Applied Mathematics and Computer Science

In this work we present an application of the concept of non-cooperative game equilibria to the design of a collision free movement of a team of mobile robots in a dynamic environment. We propose the solution to the problem of feasible control synthesis, based on a partially centralized sensory system. The control strategy based on the concept of non-cooperative game equilibria is well known in the literature. It is highly efficient through phases where the solution is unique. However, even in simple...

Control of an induction motor using sliding mode linearization

Erik Etien, Sébastien Cauet, Laurent Rambault, Gérard Champenois (2002)

International Journal of Applied Mathematics and Computer Science

Nonlinear control of the squirrel induction motor is designed using sliding mode theory. The developed approach leads to the design of a sliding mode controller in order to linearize the behaviour of an induction motor. The second problem described in the paper is decoupling between two physical outputs: the rotor speed and the rotor flux modulus. The sliding mode tools allow us to separate the control from these two outputs. To take account of parametric variations, a model-based approach is used...

Currently displaying 61 – 80 of 215