Displaying 121 – 140 of 153

Showing per page

Stability and boundedness of controllable continuous flows

František Tumajer (1988)

Aplikace matematiky

In the paper the concept of a controllable continuous flow in a metric space is introduced as a generalization of a controllable system of differential equations in a Banach space, and various kinds of stability and of boundedness of this flow are defined. Theorems stating necessary and sufficient conditions for particular kinds of stability and boundedness are formulated in terms of Ljapunov functions.

Stability of a class of adaptive nonlinear systems

Andrzej Dzielinski (2005)

International Journal of Applied Mathematics and Computer Science

This paper presents a research effort focused on the problem of robust stability of the closed-loop adaptive system. It is aimed at providing a general framework for the investigation of continuous-time, state-space systems required to track a (stable) reference model. This is motivated by the model reference adaptive control (MRAC) scheme, traditionally considered in such a setting. The application of differential inequlities results to the analysis of the Lyapunov stability for a class of nonlinear...

Stability of softly switched multiregional dynamic output controllers with a static antiwindup filter: A discrete-time case

Tomasz Zubowicz, Mietek A. Brdyś (2013)

International Journal of Applied Mathematics and Computer Science

This paper addresses the problem of model-based global stability analysis of discrete-time Takagi-Sugeno multiregional dynamic output controllers with static antiwindup filters. The presented analyses are reduced to the problem of a feasibility study of the Linear Matrix Inequalities (LMIs), derived based on Lyapunov stability theory. Two sets of LMIs are considered candidate derived from the classical common quadratic Lyapunov function, which may in some cases be too conservative, and a fuzzy Lyapunov...

Stabilization of nonlinear stochastic systems without unforced dynamics via time-varying feedback

Patrick Florchinger (2018)

Kybernetika

In this paper we give sufficient conditions under which a nonlinear stochastic differential system without unforced dynamics is globally asymptotically stabilizable in probability via time-varying smooth feedback laws. The technique developed to design explicitly the time-varying stabilizers is based on the stochastic Lyapunov technique combined with the strategy used to construct bounded smooth stabilizing feedback laws for passive nonlinear stochastic differential systems. The interest of this...

Stabilization of nonlinear stochastic systems without unforced dynamics via time-varying feedback

Patrick Florchinger (2016)

Kybernetika

In this paper we give sufficient conditions under which a nonlinear stochastic differential system without unforced dynamics is globally asymptotically stabilizable in probability via time-varying smooth feedback laws. The technique developed to design explicitly the time-varying stabilizers is based on the stochastic Lyapunov technique combined with the strategy used to construct bounded smooth stabilizing feedback laws for passive nonlinear stochastic differential systems. The interest of this...

Stabilization of nonlinear systems with varying parameter by a control Lyapunov function

Wajdi Kallel, Thouraya Kharrat (2017)

Kybernetika

In this paper, we provide an explicit homogeneous feedback control with the requirement that a control Lyapunov function exists for affine in control systems with bounded parameter that satisfies an homogeneous condition. We use a modified version of the Sontag's formula to achieve our main goal. Moreover, we prove that the existence of an homogeneous control Lyapunov function for an homogeneous system leads to an homogeneous closed-loop system which is asymptotically stable by an homogeneous feedback...

Stabilization of partially linear composite stochastic systems via stochastic Luenberger observers

Patrick Florchinger (2022)

Kybernetika

The present paper addresses the problem of the stabilization (in the sense of exponential stability in mean square) of partially linear composite stochastic systems by means of a stochastic observer. We propose sufficient conditions for the existence of a linear feedback law depending on an estimation given by a stochastic Luenberger observer which stabilizes the system at its equilibrium state. The novelty in our approach is that all the state variables but the output can be corrupted by noises...

Switching and stability properties of conewise linear systems

Jinglai Shen, Lanshan Han, Jong-Shi Pang (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Being a unique phenomenon in hybrid systems, mode switch is of fundamental importance in dynamic and control analysis. In this paper, we focus on global long-time switching and stability properties of conewise linear systems (CLSs), which are a class of linear hybrid systems subject to state-triggered switchings recently introduced for modeling piecewise linear systems. By exploiting the conic subdivision structure, the “simple switching behavior” of the CLSs is proved. The infinite-time mode switching behavior...

Synchronization of fractional chaotic complex networks with delays

Jian-Bing Hu, Hua Wei, Ye-Feng Feng, Xiao-Bo Yang (2019)

Kybernetika

The synchronization of fractional-order complex networks with delay is investigated in this paper. By constructing a novel Lyapunov-Krasovskii function V and taking integer derivative instead of fractional derivative of the function, a sufficient criterion is obtained in the form of linear matrix inequalities to realize synchronizing complex dynamical networks. Finally, a numerical example is shown to illustrate the feasibility and effectiveness of the proposed method.

Systems with hysteresis in the feedback loop : existence, regularity and asymptotic behaviour of solutions

Hartmut Logemann, Eugene P. Ryan (2003)

ESAIM: Control, Optimisation and Calculus of Variations

An existence and regularity theorem is proved for integral equations of convolution type which contain hysteresis nonlinearities. On the basis of this result, frequency-domain stability criteria are derived for feedback systems with a linear infinite-dimensional system in the forward path and a hysteresis nonlinearity in the feedback path. These stability criteria are reminiscent of the classical circle criterion which applies to static sector-bounded nonlinearities. The class of hysteresis operators...

Systems with hysteresis in the feedback loop: existence, regularity and asymptotic behaviour of solutions

Hartmut Logemann, Eugene P. Ryan (2010)

ESAIM: Control, Optimisation and Calculus of Variations

An existence and regularity theorem is proved for integral equations of convolution type which contain hysteresis nonlinearities. On the basis of this result, frequency-domain stability criteria are derived for feedback systems with a linear infinite-dimensional system in the forward path and a hysteresis nonlinearity in the feedback path. These stability criteria are reminiscent of the classical circle criterion which applies to static sector-bounded nonlinearities. The class of hysteresis operators...

Currently displaying 121 – 140 of 153