Displaying 881 – 900 of 966

Showing per page

The -product approach for linear ODEs: A numerical study of the scalar case

Pozza, Stefano, Van Buggenhout, Niel (2023)

Programs and Algorithms of Numerical Mathematics

Solving systems of non-autonomous ordinary differential equations (ODE) is a crucial and often challenging problem. Recently a new approach was introduced based on a generalization of the Volterra composition. In this work, we explain the main ideas at the core of this approach in the simpler setting of a scalar ODE. Understanding the scalar case is fundamental since the method can be straightforwardly extended to the more challenging problem of systems of ODEs. Numerical examples illustrate the...

The structure-from-motion reconstruction pipeline – a survey with focus on short image sequences

Klaus Häming, Gabriele Peters (2010)

Kybernetika

The problem addressed in this paper is the reconstruction of an object in the form of a realistically textured 3D model from images taken with an uncalibrated camera. We especially focus on reconstructions from short image sequences. By means of a description of an easy to use system, which is able to accomplish this in a fast and reliable way, we give a survey of all steps of the reconstruction pipeline. For the purpose of developing a coherent reconstruction system it is necessary to integrate...

The sum-product algorithm: algebraic independence and computational aspects

Francesco M. Malvestuto (2013)

Kybernetika

The sum-product algorithm is a well-known procedure for marginalizing an “acyclic” product function whose range is the ground set of a commutative semiring. The algorithm is general enough to include as special cases several classical algorithms developed in information theory and probability theory. We present four results. First, using the sum-product algorithm we show that the variable sets involved in an acyclic factorization satisfy a relation that is a natural generalization of probability-theoretic...

The tree of shapes of an image

Coloma Ballester, Vicent Caselles, P. Monasse (2003)

ESAIM: Control, Optimisation and Calculus of Variations

In [30], Kronrod proves that the connected components of isolevel sets of a continuous function can be endowed with a tree structure. Obviously, the connected components of upper level sets are an inclusion tree, and the same is true for connected components of lower level sets. We prove that in the case of semicontinuous functions, those trees can be merged into a single one, which, following its use in image processing, we call “tree of shapes”. This permits us to solve a classical representation...

The tree of shapes of an image

Coloma Ballester, Vicent Caselles, P. Monasse (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In [CITE], Kronrod proves that the connected components of isolevel sets of a continuous function can be endowed with a tree structure. Obviously, the connected components of upper level sets are an inclusion tree, and the same is true for connected components of lower level sets. We prove that in the case of semicontinuous functions, those trees can be merged into a single one, which, following its use in image processing, we call “tree of shapes”. This permits us to solve a classical representation problem...

The UD RLS algorithm for training feedforward neural networks

Jarosław Bilski (2005)

International Journal of Applied Mathematics and Computer Science

A new algorithm for training feedforward multilayer neural networks is proposed. It is based on recursive least squares procedures and U-D factorization, which is a well-known technique in filter theory. It will be shown that due to the U-D factorization method, our algorithm requires fewer computations than the classical RLS applied to feedforward multilayer neural network training.

Theoretical analysis for 1 - 2 minimization with partial support information

Haifeng Li, Leiyan Guo (2025)

Applications of Mathematics

We investigate the recovery of k -sparse signals using the 1 - 2 minimization model with prior support set information. The prior support set information, which is believed to contain the indices of nonzero signal elements, significantly enhances the performance of compressive recovery by improving accuracy, efficiency, reducing complexity, expanding applicability, and enhancing robustness. We assume k -sparse signals 𝐱 with the prior support T which is composed of g true indices and b wrong indices,...

Theoretical foundation of the weighted Laplace inpainting problem

Laurent Hoeltgen, Andreas Kleefeld, Isaac Harris, Michael Breuss (2019)

Applications of Mathematics

Laplace interpolation is a popular approach in image inpainting using partial differential equations. The classic approach considers the Laplace equation with mixed boundary conditions. Recently a more general formulation has been proposed, where the differential operator consists of a point-wise convex combination of the Laplacian and the known image data. We provide the first detailed analysis on existence and uniqueness of solutions for the arising mixed boundary value problem. Our approach considers...

Time-frequency analysis of Sjöstrand's class.

Karlheinz Gröchenig (2006)

Revista Matemática Iberoamericana

We investigate the properties an exotic symbol class of pseudodifferential operators, Sjöstrand's class, with methods of time-frequency analysis (phase space analysis). Compared to the classical treatment, the time-frequency approach leads to striklingly simple proofs of Sjöstrand's fundamental results and to far-reaching generalizations.

Transformée en paquets d'ondelettes des signaux stationnaires: comportement asymptotique des densités spectrales.

Loïc Hervé (1996)

Revista Matemática Iberoamericana

We consider quadrature mirror filters, and the associated wavelet packet transform. Let X = {Xn}n∈Z be a stationary signal which has a continuous spectral density f. We prove that the 2n signals obtained from X by n iterations of the transform converge to white noises when n → +∞. If f is holderian, the convergence rate is exponential.

Tropical probability theory and an application to the entropic cone

Rostislav Matveev, Jacobus W. Portegies (2020)

Kybernetika

In a series of articles, we have been developing a theory of tropical diagrams of probability spaces, expecting it to be useful for information optimization problems in information theory and artificial intelligence. In this article, we give a summary of our work so far and apply the theory to derive a dimension-reduction statement about the shape of the entropic cone.

Currently displaying 881 – 900 of 966