The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we prove that the representation from in GL with image in PGL corresponding to the example in [B-K] is modular. This representation has conductor and determinant ; its modularity was not yet proved, since this representation does not satisfy the hypothesis of the theorems of [B-D-SB-T] and [Tay2].
This paper is essentially the text of the author’s lecture at the 2001 Journées Arithmétiques. It addresses the problem of identifying in Galois-theoretic terms those two-dimensional, -adic Galois representations associated to holomorphic Hilbert modular newforms.
In this short note we give a new approach to proving modularity of -adic Galois representations using a method of -adic approximations. This recovers some of the well-known results of Wiles and Taylor in many, but not all, cases. A feature of the new approach is that it works directly with the -adic Galois representation whose modularity is sought to be established. The three main ingredients are a Galois cohomology technique of Ramakrishna, a level raising result due to Ribet, Diamond, Taylor,...
Currently displaying 1 –
8 of
8