The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
La conjecture de Birch et Swinnerton-Dyer prédit que l’ordre du zéro en de la fonction d’une courbe elliptique définie sur est égal au rang du groupe de ses points rationnels. On sait démontrer cette conjecture si ou , mais on n’a aucun résultat reliant et si . Nous expliquerons comment Kato démontre que la fonction -adique attachée à a, en , un...
La conjecture dit qu’une représentation continue irréductible impaire du groupe de Galois de dans un espace vectoriel de dimension sur un corps fini de caractéristique provient d’une forme modulaire. C. Khare vient de la prouver pour les représentations qui sont non ramifiées hors de .
In this lecture we introduce the reader to the proof of the p-adic monodromy theorem linking the p-adic differential equations theory and the local Galois p-adic representations theory.
We prove the indecomposability of the Galois representation restricted to the -decomposition group attached to a non CM nearly -ordinary weight two Hilbert modular form over a totally real field under the assumption that either the degree of over is odd or the automorphic representation attached to the Hilbert modular form is square integrable at some finite place of .
Let be a rational prime and a complete discrete valuation field with residue field of positive characteristic . When is finite, generalizing the theory of Deligne [1], we construct in [10] and [11] a theory of local -constants for representations, over a complete local ring with an algebraically closed residue field of characteristic , of the Weil group of . In this paper, we generalize the results in [10] and [11] to the case where is an arbitrary perfect field.
We prove the compatibility of the local and global Langlands correspondences at places dividing for the -adic Galois representations associated to regular algebraic conjugate self-dual cuspidal automorphic representations of over an imaginary CM field, under the assumption that the automorphic representations have Iwahori-fixed vectors at places dividing and have Shin-regular weight.
The -adic local Langlands correspondence for attaches to any -dimensional irreducible -adic representation of an admissible unitary representation of . The unitary principal series of are those corresponding to trianguline representations. In this article, for , using the machinery of Colmez, we determine the space of locally analytic vectors for all non-exceptional unitary principal series of by proving a conjecture of Emerton.
Currently displaying 1 –
11 of
11