The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 181 –
200 of
308
If conditional independence constraints define a family of positive distributions that is log-convex then this family turns out to be a Markov model over an undirected graph. This is proved for the distributions on products of finite sets and for the regular Gaussian ones. As a consequence, the assertion known as Brook factorization theorem, Hammersley–Clifford theorem or Gibbs–Markov equivalence is obtained.
The simultaneous occurrence of conditional independences among subvectors of a regular Gaussian vector is examined. All configurations of the conditional independences within four jointly regular Gaussian variables are found and completely characterized in terms of implications involving conditional independence statements. The statements induced by the separation in any simple graph are shown to correspond to such a configuration within a regular Gaussian vector.
For p ≡ 1 (mod 4), we prove the formula (conjectured by R. Chapman) for the determinant of the (p+1)/2 × (p+1)/2 matrix with .
No polynomial algorithms are known for finding the coefficients of the characteristic polynomial and characteristic equation of a matrix in max- algebra. The following are proved: (1) The task of finding the max-algebraic characteristic polynomial for permutation matrices encoded using the lengths of their constituent cycles is NP-complete. (2) The task of finding the lowest order finite term of the max-algebraic characteristic polynomial for a matrix can be converted to the assignment problem....
The main contribution of this work is to provide two algorithms for the computation of the minimal polynomial of univariate polynomial matrices. The first algorithm is based on the solution of linear matrix equations while the second one employs DFT techniques. The whole theory is illustrated with examples.
Currently displaying 181 –
200 of
308