The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
1240
Domain decomposition techniques provide a flexible tool for the numerical
approximation of partial differential equations. Here, we consider
mortar techniques for quadratic finite elements in 3D with
different Lagrange multiplier spaces.
In particular, we
focus on Lagrange multiplier spaces
which yield optimal discretization
schemes and a locally supported basis for the associated
constrained mortar spaces in case
of hexahedral triangulations. As a result,
standard efficient iterative solvers...
In this article we produce a refined version of the classical Pohozaev identity in the radial setting. The refined identity is then compared to the original, and possible applications are discussed.
In this paper, by use of affine biquadratic elements, we construct and analyze a finite volume element scheme for elliptic equations on quadrilateral meshes. The scheme is shown to be of second-order in -norm, provided that each quadrilateral in partition is almost a parallelogram. Numerical experiments are presented to confirm the usefulness and efficiency of the method.
In this paper, by use of affine biquadratic elements, we construct
and analyze a finite volume element scheme for elliptic equations on
quadrilateral meshes. The scheme is shown to be of second-order in
H1-norm, provided that each quadrilateral in partition is almost
a parallelogram. Numerical experiments are presented to confirm the
usefulness and efficiency of the method.
We are interested in an optimal shape design formulation for a class of free boundary problems of Bernoulli type. We show the existence of the optimal solution of this problem by proving continuity of the solution of the state problem with respect to the domain. The main tools in establishing such a continuity are a result concerning uniform continuity of the trace operator with respect to the domain and a recent result on the uniform Poincaré inequality for variable domains.
In this talk we extend to Gevrey-s obstacles with a result on the poles free zone due to J. Sjöstrand [8] for the analytic case.
The goal of our paper is to introduce basis functions for the finite element discretization of a second order linear elliptic
operator with rough or highly oscillating coefficients.
The proposed basis functions are inspired by the classic idea of component
mode synthesis and exploit an orthogonal decomposition
of the trial subspace to minimize the energy.
Numerical experiments illustrate the effectiveness of the proposed basis functions.
We propose a new reduced basis element-cum-component mode synthesis approach for parametrized elliptic coercive partial differential equations. In the Offline stage we construct a Library of interoperable parametrized reference components relevant to some family of problems; in the Online stage we instantiate and connect reference components (at ports) to rapidly form and query parametric systems. The method is based on static condensation at the interdomain level, a conforming eigenfunction “port”...
Currently displaying 81 –
100 of
1240