Displaying 661 – 680 of 737

Showing per page

Asymptotic and numerical modelling of flows in fractured porous media

Philippe Angot, Franck Boyer, Florence Hubert (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

This study concerns some asymptotic models used to compute the flow outside and inside fractures in a bidimensional porous medium. The flow is governed by the Darcy law both in the fractures and in the porous matrix with large discontinuities in the permeability tensor. These fractures are supposed to have a small thickness with respect to the macroscopic length scale, so that we can asymptotically reduce them to immersed polygonal fault interfaces and the model finally consists in a coupling between...

Asymptotic behavior of nonlinear systems in varying domains with boundary conditions on varying sets

Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez (2009)

ESAIM: Control, Optimisation and Calculus of Variations


For a fixed bounded open set Ω N , a sequence of open sets Ω n Ω and a sequence of sets Γ n Ω Ω n , we study the asymptotic behavior of the solution of a nonlinear elliptic system posed on Ω n , satisfying Neumann boundary conditions on Γ n and Dirichlet boundary conditions on  Ω n Γ n . We obtain a representation of the limit problem which is stable by homogenization and we prove that this representation depends on Ω n and Γ n locally.


Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits

Didier Robert, H. Tamura (1989)

Annales de l'institut Fourier

We study the semi-classical asymptotic behavior as ( h 0 ) of scattering amplitudes for Schrödinger operators - ( 1 / 2 ) h 2 Δ + V . The asymptotic formula is obtained for energies fixed in a non-trapping energy range and also is applied to study the low energy behavior of scattering amplitudes for a certain class of slowly decreasing repulsive potentials without spherical symmetry.

Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential

Veronica Felli, Alberto Ferrero, Susanna Terracini (2011)

Journal of the European Mathematical Society

Asymptotics of solutions to Schrödinger equations with singular magnetic and electric potentials is investigated. By using a Almgren type monotonicity formula, separation of variables, and an iterative Brezis–Kato type procedure, we describe the exact behavior near the singularity of solutions to linear and semilinear (critical and subcritical) elliptic equations with an inverse square electric potential and a singular magnetic potential with a homogeneity of order −1.

Currently displaying 661 – 680 of 737