The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 21 –
40 of
519
A method to approximate the Euler equations is presented. The method is a multi-domain approximation, and a variational form of the Euler equations is found by making use of the divergence theorem. The method is similar to that of the Discontinuous-Galerkin method of Cockburn and Shu, but the implementation is constructed through a spectral, multi-domain approach. The method is introduced and is shown to be a conservative scheme. A numerical example is given for the expanding flow around a point...
Let be a compact subset of a separable Hilbert space with finite fractal dimension , and an orthogonal projection in of rank greater than or equal to . For every , there exists an orthogonal projection in of the same rank as , which is injective when restricted to and such that . This result follows from Mañé’s paper. Thus the inverse of the restricted mapping is well defined. It is natural to ask whether there exists a universal modulus of continuity for the inverse of Mañé’s...
A continuous finite element method to approximate Friedrichs' systems is
proposed and analyzed. Stability is achieved by penalizing the jumps
across mesh
interfaces of the normal derivative of some components of the discrete solution.
The convergence analysis leads to optimal convergence rates
in the graph norm and suboptimal of order ½ convergence rates in
the L2-norm. A variant of the method specialized to
Friedrichs' systems associated with elliptic PDE's in mixed form and
reducing the number...
We analyze the equation coming from the Eulerian-Lagrangian description of fluids. We discuss a couple of ways to extend this notion to viscous fluids. The main focus of this paper is to discuss the first way, due to Constantin. We show that this description can only work for short times, after which the ``back to coordinates map'' may have no smooth inverse. Then we briefly discuss a second way that uses Brownian motion. We use this to provide a plausibility argument for the global regularity for...
We propose a finite volume scheme to study the oscillations of a spherical bubble of gas in a liquid phase. Spherical symmetry implies a geometric source term in the Euler equations. Our scheme satisfies the well-balanced property. It is based on the VFRoe approach. In order to avoid spurious pressure oscillations, the well-balanced approach is coupled with an ALE (Arbitrary Lagrangian Eulerian) technique at the interface and a random sampling remap.
A classical model for three-phase capillary immiscible flows in a porous medium is considered. Capillarity pressure functions are found, with a corresponding diffusion-capillarity tensor being triangular. The model is reduced to a degenerate quasilinear parabolic system. A global existence theorem is proved under some hypotheses on the model data.
For a two phase incompressible flow we consider a diffuse interface model aimed at addressing the movement of three-phase (fluid-fluid-solid) contact lines. The model consists of the Cahn Hilliard Navier Stokes system with a variant of the Navier slip boundary conditions. We show that this model possesses a natural energy law. For this system, a new numerical technique based on operator splitting and fractional time-stepping is proposed. The method is shown to be unconditionally stable. We present...
In the present paper we give a new proof of the Caffarelli-Kohn-Nirenberg theorem based on a direct approach. Given a pair (u,p) of suitable weak solutions to the Navier-Stokes equations in ℝ³ × ]0,∞[ the velocity field u satisfies the following property of partial regularity: The velocity u is Lipschitz continuous in a neighbourhood of a point (x₀,t₀) ∈ Ω × ]0,∞ [ if
for a sufficiently small .
In this paper we introduce a new class of numerical schemes for the incompressible Navier-Stokes equations, which are
inspired by the theory of discrete kinetic schemes for compressible fluids. For these approximations it is possible to give
a stability condition, based on a discrete velocities version of the Boltzmann H-theorem. Numerical tests are performed to
investigate their convergence and accuracy.
We present a domain decomposition theory on an interface problem for the linear transport equation between a diffusive and a non-diffusive region. To leading order, i.e. up to an error of the order of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the interface at the next order of approximation. In particular, our algorithm avoids iterating...
Currently displaying 21 –
40 of
519