Displaying 41 – 60 of 517

Showing per page

A Domain Decomposition Analysis for a Two-Scale Linear Transport Problem

François Golse, Shi Jin, C. David Levermore (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a domain decomposition theory on an interface problem for the linear transport equation between a diffusive and a non-diffusive region. To leading order, i.e. up to an error of the order of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the interface at the next order of approximation. In particular, our algorithm avoids iterating...

A Dual Mixed Formulation for Non-isothermal Oldroyd–Stokes Problem

M. Farhloul, A. Zine (2011)

Mathematical Modelling of Natural Phenomena

We propose a mixed formulation for non-isothermal Oldroyd–Stokes problem where the both extra stress and the heat flux’s vector are considered. Based on such a formulation, a dual mixed finite element is constructed and analyzed. This finite element method enables us to obtain precise approximations of the dual variable which are, for the non-isothermal fluid flow problems, the viscous and polymeric components of the extra-stress tensor, as well...

A fictitious domain method for the numerical two-dimensional simulation of potential flows past sails

Alfredo Bermúdez, Rodolfo Rodríguez, María Luisa Seoane (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the mathematical and numerical analysis of a simplified two-dimensional model for the interaction between the wind and a sail. The wind is modeled as a steady irrotational plane flow past the sail, satisfying the Kutta-Joukowski condition. This condition guarantees that the flow is not singular at the trailing edge of the sail. Although for the present analysis the position of the sail is taken as data, the final aim of this research is to develop tools to compute the sail...

A fictitious domain method for the numerical two-dimensional simulation of potential flows past sails

Alfredo Bermúdez, Rodolfo Rodríguez, María Luisa Seoane (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the mathematical and numerical analysis of a simplified two-dimensional model for the interaction between the wind and a sail. The wind is modeled as a steady irrotational plane flow past the sail, satisfying the Kutta-Joukowski condition. This condition guarantees that the flow is not singular at the trailing edge of the sail. Although for the present analysis the position of the sail is taken as data, the final aim of this research is to develop tools to compute the sail...

A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions

Christine Bernardi, Frédéric Hecht, Rüdiger Verfürth (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a variational formulation of the three-dimensional Navier–Stokes equations with mixed boundary conditions and prove that the variational problem admits a solution provided that the domain satisfies a suitable regularity assumption. Next, we propose a finite element discretization relying on the Galerkin method and establish a priori and a posteriori error estimates.

A finite element scheme for the evolution of orientational order in fluid membranes

Sören Bartels, Georg Dolzmann, Ricardo H. Nochetto (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We investigate the evolution of an almost flat membrane driven by competition of the homogeneous, Frank, and bending energies as well as the coupling of the local order of the constituent molecules of the membrane to its curvature. We propose an alternative to the model in [J.B. Fournier and P. Galatoa, J. Phys. II7 (1997) 1509–1520; N. Uchida, Phys. Rev. E66 (2002) 040902] which replaces a Ginzburg-Landau penalization for the length of the order parameter by a rigid constraint. We introduce...

A free boundary stationary magnetohydrodynamic problem in connection with the electromagnetic casting process

Tomasz Roliński (1995)

Annales Polonici Mathematici

We investigate the behaviour of the meniscus of a drop of liquid aluminium in the neighbourhood of a state of equilibrium under the influence of weak electromagnetic forces. The mathematical model comprises both Maxwell and Navier-Stokes equations in 2D. The meniscus is governed by the Young-Laplace equation, the data being the jump of the normal stress. To show the existence and uniqueness of the solution we use the classical implicit function theorem. Moreover, the differentiability of the operator...

A full discretization of the time-dependent Navier-Stokes equations by a two-grid scheme

Hyam Abboud, Toni Sayah (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We study a two-grid scheme fully discrete in time and space for solving the Navier-Stokes system. In the first step, the fully non-linear problem is discretized in space on a coarse grid with mesh-size H and time step k. In the second step, the problem is discretized in space on a fine grid with mesh-size h and the same time step, and linearized around the velocity uH computed in the first step. The two-grid strategy is motivated by the fact that under suitable assumptions, the contribution of uH...

A generalization of a theorem by Kato on Navier-Stokes equations.

Marco Cannone (1997)

Revista Matemática Iberoamericana

We generalize a classical result of T. Kato on the existence of global solutions to the Navier-Stokes system in C([0,∞);L3(R3)). More precisely, we show that if the initial data are sufficiently oscillating, in a suitable Besov space, then Kato's solution exists globally. As a corollary to this result, we obtain a theory of existence of self-similar solutions for the Navier-Stokes equations.

Currently displaying 41 – 60 of 517