Mathematical modelling of an electrolysis process
We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we consider the...
We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we consider the...
Flow cytometric analysis using intracellular dyes such as CFSE is a powerful experimental tool which can be used in conjunction with mathematical modeling to quantify the dynamic behavior of a population of lymphocytes. In this survey we begin by providing an overview of the mathematically relevant aspects of the data collection procedure. We then present an overview of the large body of mathematical models, along with their assumptions and uses,...
Models of two phase flows in porous media, used in petroleum engineering, lead to a system of two coupled equations with elliptic and parabolic degenerate terms, and two unknowns, the saturation and the pressure. For the purpose of their approximation, a coupled scheme, consisting in a finite volume method together with a phase-by-phase upstream weighting scheme, is used in the industrial setting. This paper presents a mathematical analysis of this coupled scheme, first showing that it satisfies...
Models of two phase flows in porous media, used in petroleum engineering, lead to a system of two coupled equations with elliptic and parabolic degenerate terms, and two unknowns, the saturation and the pressure. For the purpose of their approximation, a coupled scheme, consisting in a finite volume method together with a phase-by-phase upstream weighting scheme, is used in the industrial setting. This paper presents a mathematical analysis of this coupled scheme, first showing that it satisfies...
The paper is devoted to the study of the boundary value problem for an elliptic quasilinear second-order partial differential equation in a multiply connected, bounded plane domain under the assumption that the Dirichlet boundary value conditions on the separate components of the boundary are given up to additive constants. These constants together with the solution of the equation considered are to be determined so as to fulfil the so called trainling conditions. The results have immediate applications...
We consider a free interface problem for the Navier-Stokes equations. We obtain local in time unique existence of solutions to this problem for any initial data and external forces, and global in time unique existence of solutions for sufficiently small initial data. Thanks to global in time maximal regularity of the linearized problem, we can prove a global in time existence and uniqueness theorem by the contraction mapping principle.
We consider the dynamics of spatially periodic nematic liquid crystal flows in the whole space and prove existence and uniqueness of local-in-time strong solutions using maximal -regularity of the periodic Laplace and Stokes operators and a local-in-time existence theorem for quasilinear parabolic equations à la Clément-Li (1993). Maximal regularity of the Laplace and the Stokes operator is obtained using an extrapolation theorem on the locally compact abelian group to obtain an -bound for the...
We consider systems of particles in dimension one, driven by pair Coulombian or gravitational interactions. When the number of particles goes to infinity in the so called mean field scaling, we formally expect convergence towards the Vlasov-Poisson equation. Actually a rigorous proof of that convergence was given by Trocheris in [Tro86]. Here we shall give a simpler proof of this result, and explain why it implies the so-called “Propagation of molecular chaos”. More precisely, both results will...