Displaying 1461 – 1480 of 3483

Showing per page

Mathematical modeling of hygro-thermal processes in deformed porous media

Beneš, Michal, Krupička, Lukáš (2019)

Programs and Algorithms of Numerical Mathematics

In this contribution we propose a model of coupled heat and moisture transport in variable saturated deformed porous media. Solution of this model provides temperature, moisture content and strain as a function of space and time. We present the detailed description of the model and a~numerical illustrative example.

Mathematical modeling of time-harmonic aeroacoustics with a generalized impedance boundary condition

Eric Luneville, Jean-Francois Mercier (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study the time-harmonic acoustic scattering in a duct in presence of a flow and of a discontinuous impedance boundary condition. Unlike a continuous impedance, a discontinuous one leads to still open modeling questions, as in particular the singularity of the solution at the abrupt transition and the choice of the right unknown to formulate the scattering problem. To address these questions we propose a mathematical approach based on variational formulations set in weighted Sobolev spaces. Considering...

Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part II: Mixed-hybrid finite element solution

Kamyar Malakpoor, Enrique F. Kaasschieter, Jacques M. Huyghe (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

The swelling and shrinkage of biological tissues are modelled by a four-component mixture theory [J.M. Huyghe and J.D. Janssen, Int. J. Engng. Sci.35 (1997) 793–802; K. Malakpoor, E.F. Kaasschieter and J.M. Huyghe, Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part I: Modeling of incompressible charged porous media. ESAIM: M2AN41 (2007) 661–678]. This theory results in a coupled system of nonlinear parabolic differential equations together with an algebraic...

Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part I: Modelling of incompressible charged porous media

Kamyar Malakpoor, Enrique F. Kaasschieter, Jacques M. Huyghe (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

The swelling and shrinkage of biological tissues are modelled by a four-component mixture theory in which a deformable and charged porous medium is saturated with a fluid with dissolved ions. Four components are defined: solid, liquid, cations and anions. The aim of this paper is the construction of the Lagrangian model of the four-component system. It is shown that, with the choice of Lagrangian description of the solid skeleton, the motion of the other components can be described in terms of...

Mathematical models for laser-plasma interaction

Rémi Sentis (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we consider the...

Mathematical models for laser-plasma interaction

Rémi Sentis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we consider the...

Mathematical Models of Dividing Cell Populations: Application to CFSE Data

H.T. Banks, W. Clayton Thompson (2012)

Mathematical Modelling of Natural Phenomena

Flow cytometric analysis using intracellular dyes such as CFSE is a powerful experimental tool which can be used in conjunction with mathematical modeling to quantify the dynamic behavior of a population of lymphocytes. In this survey we begin by providing an overview of the mathematically relevant aspects of the data collection procedure. We then present an overview of the large body of mathematical models, along with their assumptions and uses,...

Mathematical study of a petroleum-engineering scheme

Robert Eymard, Raphaèle Herbin, Anthony Michel (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Models of two phase flows in porous media, used in petroleum engineering, lead to a system of two coupled equations with elliptic and parabolic degenerate terms, and two unknowns, the saturation and the pressure. For the purpose of their approximation, a coupled scheme, consisting in a finite volume method together with a phase-by-phase upstream weighting scheme, is used in the industrial setting. This paper presents a mathematical analysis of this coupled scheme, first showing that it satisfies...

Mathematical study of a petroleum-engineering scheme

Robert Eymard, Raphaèle Herbin, Anthony Michel (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Models of two phase flows in porous media, used in petroleum engineering, lead to a system of two coupled equations with elliptic and parabolic degenerate terms, and two unknowns, the saturation and the pressure. For the purpose of their approximation, a coupled scheme, consisting in a finite volume method together with a phase-by-phase upstream weighting scheme, is used in the industrial setting. This paper presents a mathematical analysis of this coupled scheme, first showing that it satisfies...

Mathematical study of rotational incompressible non-viscous flows through multiply connected domains

Miloslav Feistauer (1981)

Aplikace matematiky

The paper is devoted to the study of the boundary value problem for an elliptic quasilinear second-order partial differential equation in a multiply connected, bounded plane domain under the assumption that the Dirichlet boundary value conditions on the separate components of the boundary are given up to additive constants. These constants together with the solution of the equation considered are to be determined so as to fulfil the so called trainling conditions. The results have immediate applications...

Maximal regularity and viscous incompressible flows with free interface

Senjo Shimizu (2008)

Banach Center Publications

We consider a free interface problem for the Navier-Stokes equations. We obtain local in time unique existence of solutions to this problem for any initial data and external forces, and global in time unique existence of solutions for sufficiently small initial data. Thanks to global in time L p - L q maximal regularity of the linearized problem, we can prove a global in time existence and uniqueness theorem by the contraction mapping principle.

Maximal regularity of the spatially periodic Stokes operator and application to nematic liquid crystal flows

Jonas Sauer (2016)

Czechoslovak Mathematical Journal

We consider the dynamics of spatially periodic nematic liquid crystal flows in the whole space and prove existence and uniqueness of local-in-time strong solutions using maximal L p -regularity of the periodic Laplace and Stokes operators and a local-in-time existence theorem for quasilinear parabolic equations à la Clément-Li (1993). Maximal regularity of the Laplace and the Stokes operator is obtained using an extrapolation theorem on the locally compact abelian group G : = n - 1 × / L to obtain an -bound for the...

Currently displaying 1461 – 1480 of 3483