Displaying 241 – 260 of 321

Showing per page

Some properties of generalized distance eigenvalues of graphs

Yuzheng Ma, Yan Ling Shao (2024)

Czechoslovak Mathematical Journal

Let G be a simple connected graph with vertex set V ( G ) = { v 1 , v 2 , , v n } and edge set E ( G ) , and let d v i be the degree of the vertex v i . Let D ( G ) be the distance matrix and let T r ( G ) be the diagonal matrix of the vertex transmissions of G . The generalized distance matrix of G is defined as D α ( G ) = α T r ( G ) + ( 1 - α ) D ( G ) , where 0 α 1 . Let λ 1 ( D α ( G ) ) λ 2 ( D α ( G ) ) ... λ n ( D α ( G ) ) be the generalized distance eigenvalues of G , and let k be an integer with 1 k n . We denote by S k ( D α ( G ) ) = λ 1 ( D α ( G ) ) + λ 2 ( D α ( G ) ) + ... + λ k ( D α ( G ) ) the sum of the k largest generalized distance eigenvalues. The generalized distance spread of a graph G is defined as D α S ( G ) = λ 1 ( D α ( G ) ) - λ n ( D α ( G ) ) . We obtain some...

Some properties of the distance Laplacian eigenvalues of a graph

Mustapha Aouchiche, Pierre Hansen (2014)

Czechoslovak Mathematical Journal

The distance Laplacian of a connected graph G is defined by = Diag ( Tr ) - 𝒟 , where 𝒟 is the distance matrix of G , and Diag ( Tr ) is the diagonal matrix whose main entries are the vertex transmissions in G . The spectrum of is called the distance Laplacian spectrum of G . In the present paper, we investigate some particular distance Laplacian eigenvalues. Among other results, we show that the complete graph is the unique graph with only two distinct distance Laplacian eigenvalues. We establish some properties of the distance...

Spanning caterpillars with bounded diameter

Ralph Faudree, Ronald Gould, Michael Jacobson, Linda Lesniak (1995)

Discussiones Mathematicae Graph Theory

A caterpillar is a tree with the property that the vertices of degree at least 2 induce a path. We show that for every graph G of order n, either G or G̅ has a spanning caterpillar of diameter at most 2 log n. Furthermore, we show that if G is a graph of diameter 2 (diameter 3), then G contains a spanning caterpillar of diameter at most c n 3 / 4 (at most n).

Spherical and clockwise spherical graphs

Abdelhafid Berrachedi, Ivan Havel, Henry Martyn Mulder (2003)

Czechoslovak Mathematical Journal

The main subject of our study are spherical (weakly spherical) graphs, i.e. connected graphs fulfilling the condition that in each interval to each vertex there is exactly one (at least one, respectively) antipodal vertex. Our analysis concerns properties of these graphs especially in connection with convexity and also with hypercube graphs. We deal e.g. with the problem under what conditions all intervals of a spherical graph induce hypercubes and find a new characterization of hypercubes: G is...

Statuses and branch-weights of weighted trees

Chiang Lin, Jen-Ling Shang (2009)

Czechoslovak Mathematical Journal

In this paper we show that in a tree with vertex weights the vertices with the second smallest status and those with the second smallest branch-weight are the same.

Statuses and double branch weights of quadrangular outerplanar graphs

Halina Bielak, Kamil Powroźnik (2015)

Annales UMCS, Mathematica

In this paper we study some distance properties of outerplanar graphs with the Hamiltonian cycle whose all bounded faces are cycles isomorphic to the cycle C4. We call this family of graphs quadrangular outerplanar graphs. We give the lower and upper bound on the double branch weight and the status for this graphs. At the end of this paper we show some relations between median and double centroid in quadrangular outerplanar graphs

Stratidistance in stratified graphs

Gary Chartrand, Heather Gavlas, Michael A. Henning, Reza Rashidi (1997)

Mathematica Bohemica

A graph G is a stratified graph if its vertex set is partitioned into classes (each of which is a stratum or a color class). A stratified graph with k strata is k -stratified. If G is a connected k -stratified graph with strata S i ( 1 i ...

Strong asymmetric digraphs with prescribed interior and annulus

Steven J. Winters (2001)

Czechoslovak Mathematical Journal

The directed distance d ( u , v ) from u to v in a strong digraph D is the length of a shortest u - v path in D . The eccentricity e ( v ) of a vertex v in D is the directed distance from v to a vertex furthest from v in D . The center and periphery of a strong digraph are two well known subdigraphs induced by those vertices of minimum and maximum eccentricities, respectively. We introduce the interior and annulus of a digraph which are two induced subdigraphs involving the remaining vertices. Several results concerning...

Strong Chromatic Index Of Planar Graphs With Large Girth

Gerard Jennhwa Chang, Mickael Montassier, Arnaud Pêche, André Raspaud (2014)

Discussiones Mathematicae Graph Theory

Let Δ ≥ 4 be an integer. In this note, we prove that every planar graph with maximum degree Δ and girth at least 1 Δ+46 is strong (2Δ−1)-edgecolorable, that is best possible (in terms of number of colors) as soon as G contains two adjacent vertices of degree Δ. This improves [6] when Δ ≥ 6.

The all-paths transit function of a graph

Manoj Changat, Sandi Klavžar, Henry Martyn Mulder (2001)

Czechoslovak Mathematical Journal

A transit function R on a set V is a function R V × V 2 V satisfying the axioms u R ( u , v ) , R ( u , v ) = R ( v , u ) and R ( u , u ) = { u } , for all u , v V . The all-paths transit function of a connected graph is characterized by transit axioms.

Currently displaying 241 – 260 of 321