Small -dominating sets.
In this note we present a sharp lower bound on the number of vertices in a regular graph of given degree and diameter.
Let be a simple connected graph with vertex set and edge set , and let be the degree of the vertex . Let be the distance matrix and let be the diagonal matrix of the vertex transmissions of . The generalized distance matrix of is defined as , where . Let be the generalized distance eigenvalues of , and let be an integer with . We denote by the sum of the largest generalized distance eigenvalues. The generalized distance spread of a graph is defined as . We obtain some...
The distance Laplacian of a connected graph is defined by , where is the distance matrix of , and is the diagonal matrix whose main entries are the vertex transmissions in . The spectrum of is called the distance Laplacian spectrum of . In the present paper, we investigate some particular distance Laplacian eigenvalues. Among other results, we show that the complete graph is the unique graph with only two distinct distance Laplacian eigenvalues. We establish some properties of the distance...
A caterpillar is a tree with the property that the vertices of degree at least 2 induce a path. We show that for every graph G of order n, either G or G̅ has a spanning caterpillar of diameter at most 2 log n. Furthermore, we show that if G is a graph of diameter 2 (diameter 3), then G contains a spanning caterpillar of diameter at most (at most n).
The main subject of our study are spherical (weakly spherical) graphs, i.e. connected graphs fulfilling the condition that in each interval to each vertex there is exactly one (at least one, respectively) antipodal vertex. Our analysis concerns properties of these graphs especially in connection with convexity and also with hypercube graphs. We deal e.g. with the problem under what conditions all intervals of a spherical graph induce hypercubes and find a new characterization of hypercubes: is...
In this paper we show that in a tree with vertex weights the vertices with the second smallest status and those with the second smallest branch-weight are the same.
In this paper we study some distance properties of outerplanar graphs with the Hamiltonian cycle whose all bounded faces are cycles isomorphic to the cycle C4. We call this family of graphs quadrangular outerplanar graphs. We give the lower and upper bound on the double branch weight and the status for this graphs. At the end of this paper we show some relations between median and double centroid in quadrangular outerplanar graphs
A graph is a stratified graph if its vertex set is partitioned into classes (each of which is a stratum or a color class). A stratified graph with strata is -stratified. If is a connected -stratified graph with strata
The directed distance from to in a strong digraph is the length of a shortest path in . The eccentricity of a vertex in is the directed distance from to a vertex furthest from in . The center and periphery of a strong digraph are two well known subdigraphs induced by those vertices of minimum and maximum eccentricities, respectively. We introduce the interior and annulus of a digraph which are two induced subdigraphs involving the remaining vertices. Several results concerning...
Let Δ ≥ 4 be an integer. In this note, we prove that every planar graph with maximum degree Δ and girth at least 1 Δ+46 is strong (2Δ−1)-edgecolorable, that is best possible (in terms of number of colors) as soon as G contains two adjacent vertices of degree Δ. This improves [6] when Δ ≥ 6.
A transit function on a set is a function satisfying the axioms , and , for all . The all-paths transit function of a connected graph is characterized by transit axioms.