Displaying 81 – 100 of 376

Showing per page

Cores and shells of graphs

Allan Bickle (2013)

Mathematica Bohemica

The k -core of a graph G , C k ( G ) , is the maximal induced subgraph H G such that δ ( G ) k , if it exists. For k > 0 , the k -shell of a graph G is the subgraph of G induced by the edges contained in the k -core and not contained in the ( k + 1 ) -core. The core number of a vertex is the largest value for k such that v C k ( G ) , and the maximum core number of a graph, C ^ ( G ) , is the maximum of the core numbers of the vertices of G . A graph G is k -monocore if C ^ ( G ) = δ ( G ) = k . This paper discusses some basic results on the structure of k -cores and k -shells....

Counterexample to a conjecture on the structure of bipartite partitionable graphs

Richard G. Gibson, Christina M. Mynhardt (2007)

Discussiones Mathematicae Graph Theory

A graph G is called a prism fixer if γ(G×K₂) = γ(G), where γ(G) denotes the domination number of G. A symmetric γ-set of G is a minimum dominating set D which admits a partition D = D₁∪ D₂ such that V ( G ) - N [ D i ] = D j , i,j = 1,2, i ≠ j. It is known that G is a prism fixer if and only if G has a symmetric γ-set. Hartnell and Rall [On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24 (2004), 389-402] conjectured that if G is a connected, bipartite graph such that V(G) can be partitioned...

Counting Maximal Distance-Independent Sets in Grid Graphs

Reinhardt Euler, Paweł Oleksik, Zdzisław Skupień (2013)

Discussiones Mathematicae Graph Theory

Previous work on counting maximal independent sets for paths and certain 2-dimensional grids is extended in two directions: 3-dimensional grid graphs are included and, for some/any ℓ ∈ N, maximal distance-ℓ independent (or simply: maximal ℓ-independent) sets are counted for some grids. The transfer matrix method has been adapted and successfully applied

Digraphs with isomorphic underlying and domination graphs: connected U G c ( d )

Kim A.S. Factor, Larry J. Langley (2007)

Discussiones Mathematicae Graph Theory

The domination graph of a directed graph has an edge between vertices x and y provided either (x,z) or (y,z) is an arc for every vertex z distinct from x and y. We consider directed graphs D for which the domination graph of D is isomorphic to the underlying graph of D. We demonstrate that the complement of the underlying graph must have k connected components isomorphic to complete graphs, paths, or cycles. A complete characterization of directed graphs where k = 1 is presented.

Directed hypergraphs: a tool for researching digraphs and hypergraphs

Hortensia Galeana-Sánchez, Martín Manrique (2009)

Discussiones Mathematicae Graph Theory

In this paper we introduce the concept of directed hypergraph. It is a generalisation of the concept of digraph and is closely related with hypergraphs. The basic idea is to take a hypergraph, partition its edges non-trivially (when possible), and give a total order to such partitions. The elements of these partitions are called levels. In order to preserve the structure of the underlying hypergraph, we ask that only vertices which belong to exactly the same edges may be in the same level...

Distance 2-Domination in Prisms of Graphs

Ferran Hurtado, Mercè Mora, Eduardo Rivera-Campo, Rita Zuazua (2017)

Discussiones Mathematicae Graph Theory

A set of vertices D of a graph G is a distance 2-dominating set of G if the distance between each vertex u ∊ (V (G) − D) and D is at most two. Let γ2(G) denote the size of a smallest distance 2-dominating set of G. For any permutation π of the vertex set of G, the prism of G with respect to π is the graph πG obtained from G and a copy G′ of G by joining u ∊ V(G) with v′ ∊ V(G′) if and only if v′ = π(u). If γ2(πG) = γ2(G) for any permutation π of V(G), then G is called a universal γ2-fixer. In this...

Distance independence in graphs

J. Louis Sewell, Peter J. Slater (2011)

Discussiones Mathematicae Graph Theory

For a set D of positive integers, we define a vertex set S ⊆ V(G) to be D-independent if u, v ∈ S implies the distance d(u,v) ∉ D. The D-independence number β D ( G ) is the maximum cardinality of a D-independent set. In particular, the independence number β ( G ) = β 1 ( G ) . Along with general results we consider, in particular, the odd-independence number β O D D ( G ) where ODD = 1,3,5,....

Distance perfectness of graphs

Andrzej Włoch (1999)

Discussiones Mathematicae Graph Theory

In this paper, we propose a generalization of well known kinds of perfectness of graphs in terms of distances between vertices. We introduce generalizations of α-perfect, χ-perfect, strongly perfect graphs and we establish the relations between them. Moreover, we give sufficient conditions for graphs to be perfect in generalized sense. Other generalizations of perfectness are given in papers [3] and [7].

Dominant-matching graphs

Igor' E. Zverovich, Olga I. Zverovich (2004)

Discussiones Mathematicae Graph Theory

We introduce a new hereditary class of graphs, the dominant-matching graphs, and we characterize it in terms of forbidden induced subgraphs.

Dominating and total dominating partitions in cubic graphs

Justin Southey, Michael Henning (2011)

Open Mathematics

In this paper, we continue the study of domination and total domination in cubic graphs. It is known [Henning M.A., Southey J., A note on graphs with disjoint dominating and total dominating sets, Ars Combin., 2008, 89, 159–162] that every cubic graph has a dominating set and a total dominating set which are disjoint. In this paper we show that every connected cubic graph on nvertices has a total dominating set whose complement contains a dominating set such that the cardinality of the total dominating...

Dominating bipartite subgraphs in graphs

Gábor Bacsó, Danuta Michalak, Zsolt Tuza (2005)

Discussiones Mathematicae Graph Theory

A graph G is hereditarily dominated by a class 𝓓 of connected graphs if each connected induced subgraph of G contains a dominating induced subgraph belonging to 𝓓. In this paper we characterize graphs hereditarily dominated by classes of complete bipartite graphs, stars, connected bipartite graphs, and complete k-partite graphs.

Dominating functions of graphs with two values

Bohdan Zelinka (1998)

Mathematica Bohemica

The Y -domination number of a graph for a given number set Y was introduced by D. W. Bange, A. E. Barkauskas, L. H. Host and P. J. Slater as a generalization of the domination number of a graph. It is defined using the concept of a Y -dominating function. In this paper the particular case where Y = { 0 , 1 / k } for a positive integer k is studied.

Domination and independence subdivision numbers of graphs

Teresa W. Haynes, Sandra M. Hedetniemi, Stephen T. Hedetniemi (2000)

Discussiones Mathematicae Graph Theory

The domination subdivision number s d γ ( G ) of a graph is the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the domination number. Arumugam showed that this number is at most three for any tree, and conjectured that the upper bound of three holds for any graph. Although we do not prove this interesting conjecture, we give an upper bound for the domination subdivision number for any graph G in terms of the minimum degrees of adjacent vertices...

Domination and leaf density in graphs

Anders Sune Pedersen (2005)

Discussiones Mathematicae Graph Theory

The domination number γ(G) of a graph G is the minimum cardinality of a subset D of V(G) with the property that each vertex of V(G)-D is adjacent to at least one vertex of D. For a graph G with n vertices we define ε(G) to be the number of leaves in G minus the number of stems in G, and we define the leaf density ζ(G) to equal ε(G)/n. We prove that for any graph G with no isolated vertex, γ(G) ≤ n(1- ζ(G))/2 and we characterize the extremal graphs for this bound. Similar results are obtained for...

Domination, Eternal Domination, and Clique Covering

William F. Klostermeyer, C.M. Mynhardt (2015)

Discussiones Mathematicae Graph Theory

Eternal and m-eternal domination are concerned with using mobile guards to protect a graph against infinite sequences of attacks at vertices. Eternal domination allows one guard to move per attack, whereas more than one guard may move per attack in the m-eternal domination model. Inequality chains consisting of the domination, eternal domination, m-eternal domination, independence, and clique covering numbers of graph are explored in this paper. Among other results, we characterize bipartite and...

Currently displaying 81 – 100 of 376