Displaying 1001 – 1020 of 5365

Showing per page

Closed k-stop distance in graphs

Grady Bullington, Linda Eroh, Ralucca Gera, Steven J. Winters (2011)

Discussiones Mathematicae Graph Theory

The Traveling Salesman Problem (TSP) is still one of the most researched topics in computational mathematics, and we introduce a variant of it, namely the study of the closed k-walks in graphs. We search for a shortest closed route visiting k cities in a non complete graph without weights. This motivates the following definition. Given a set of k distinct vertices = x₁, x₂, ...,xₖ in a simple graph G, the closed k-stop-distance of set is defined to be d ( ) = m i n Θ ( ) ( d ( Θ ( x ) , Θ ( x ) ) + d ( Θ ( x ) , Θ ( x ) ) + . . . + d ( Θ ( x ) , Θ ( x ) ) ) , where () is the set of all permutations from...

Closure for spanning trees and distant area

Jun Fujisawa, Akira Saito, Ingo Schiermeyer (2011)

Discussiones Mathematicae Graph Theory

A k-ended tree is a tree with at most k endvertices. Broersma and Tuinstra [3] have proved that for k ≥ 2 and for a pair of nonadjacent vertices u, v in a graph G of order n with d e g G u + d e g G v n - 1 , G has a spanning k-ended tree if and only if G+uv has a spanning k-ended tree. The distant area for u and v is the subgraph induced by the set of vertices that are not adjacent with u or v. We investigate the relationship between the condition on d e g G u + d e g G v and the structure of the distant area for u and v. We prove that if the...

Coalescing Fiedler and core vertices

Didar A. Ali, John Baptist Gauci, Irene Sciriha, Khidir R. Sharaf (2016)

Czechoslovak Mathematical Journal

The nullity of a graph G is the multiplicity of zero as an eigenvalue in the spectrum of its adjacency matrix. From the interlacing theorem, derived from Cauchy’s inequalities for matrices, a vertex of a graph can be a core vertex if, on deleting the vertex, the nullity decreases, or a Fiedler vertex, otherwise. We adopt a graph theoretical approach to determine conditions required for the identification of a pair of prescribed types of root vertices of two graphs to form a cut-vertex of unique...

Codes and designs from triangular graphs and their line graphs

Washiela Fish, Khumbo Kumwenda, Eric Mwambene (2011)

Open Mathematics

For any prime p, we consider p-ary linear codes obtained from the span over 𝔽 p p of rows of incidence matrices of triangular graphs, differences of the rows and adjacency matrices of line graphs of triangular graphs. We determine parameters of the codes, minimum words and automorphism groups. We also show that the codes can be used for full permutation decoding.

Cohomologie de Hochschild des graphes de Kontsevich

Didier Arnal, Mohsen Masmoudi (2002)

Bulletin de la Société Mathématique de France

Nous calculons la cohomologie de Hochschild directement sur les graphes de Kontsevich. Celle-ci est localisée sur les graphes totalement antisymétriques ayant autant de pieds que de pattes. La considération de cette cohomologie permet de réinterpréter l’équation de formalité pour l’espace d .

Collisions of random walks

Martin T. Barlow, Yuval Peres, Perla Sousi (2012)

Annales de l'I.H.P. Probabilités et statistiques

A recurrent graph G has the infinite collision property if two independent random walks on G , started at the same point, collide infinitely often a.s. We give a simple criterion in terms of Green functions for a graph to have this property, and use it to prove that a critical Galton–Watson tree with finite variance conditioned to survive, the incipient infinite cluster in d with d 19 and the uniform spanning tree in 2 all have the infinite collision property. For power-law combs and spherically symmetric...

Color Energy Of A Unitary Cayley Graph

Chandrashekar Adiga, E. Sampathkumar, M.A. Sriraj (2014)

Discussiones Mathematicae Graph Theory

Let G be a vertex colored graph. The minimum number χ(G) of colors needed for coloring of a graph G is called the chromatic number. Recently, Adiga et al. [1] have introduced the concept of color energy of a graph Ec(G) and computed the color energy of few families of graphs with χ(G) colors. In this paper we derive explicit formulas for the color energies of the unitary Cayley graph Xn, the complement of the colored unitary Cayley graph (Xn)c and some gcd-graphs.

Coloration de graphes : fondements et applications

Dominique de Werra, Daniel Kobler (2003)

RAIRO - Operations Research - Recherche Opérationnelle

Les modèles classiques de coloration doivent leur notoriété en grande partie à leurs applications à des problèmes de type emploi du temps ; nous présentons les concepts de base des colorations ainsi qu’une série de variations et de généralisations motivées par divers problèmes d’ordonnancement dont les élaborations d’horaires scolaires. Quelques algorithmes exacts et heuristiques seront présentés et nous esquisserons des méthodes basées sur la recherche Tabou pour trouver des solutions approchées...

Coloration de graphes : fondements et applications

Dominique de Werra, Daniel Kobler (2010)

RAIRO - Operations Research

The classical colouring models are well known thanks in large part to their applications to scheduling type problems; we describe the basic concepts of colourings together with a number of variations and generalisations arising from scheduling problems such as the creation of school schedules. Some exact and heuristic algorithms will be presented, and we will sketch solution methods based on tabu search to find approximate solutions to large problems. Finally we will also mention the use...

Colorations généralisées, graphes biorientés et deux ou trois choses sur François

Abdelkader Khelladi (1999)

Annales de l'institut Fourier

La généralisation des nombres chromatiques χ n ( G ) de Stahl a été un premier thème de travail avec François et a abouti à l’introduction de la notion de colorations généralisées et leurs nombres chromatiques associés, notées χ n p , q ( G ) . Cette nouvelle notion a permis d’une part, d’infirmer avec Payan une conjecture posée par Brigham et Dutton, et d’autre part, d’étendre de manière naturelle la formule de récurrence de Stahl aux nombres chromatiques χ n 0 , q ( G ) . Cette relation s’exprime comme χ n 0 , q ( G ) χ n - 1 0 , q ( G ) + 2 . La conjecture de Bouchet...

Currently displaying 1001 – 1020 of 5365