Dual point-partition number of complementary graphs
Dürer's engraving Melencolia I famously includes a perspective view of a solid polyhedral block of which the visible portion is an 8-circuit bounding a pentagon-triple+triangle patch. The polyhedron is usually taken to be a cube truncated on antipodal corners, but an infinity of others are compatible with the visible patch. Construction of all cubic polyhedra compatible with the visible portion (i.e., Dürer Polyhedra) is discussed, explicit graphs and symmetries are listed for small cases ( ≤ 18...
We analyze a stochastic neuronal network model which corresponds to an all-to-all network of discretized integrate-and-fire neurons where the synapses are failure-prone. This network exhibits different phases of behavior corresponding to synchrony and asynchrony, and we show that this is due to the limiting mean-field system possessing multiple attractors. We also show that this mean-field limit exhibits a first-order phase transition as a function...
An integer distance graph is a graph G(D) with the set Z of integers as vertex set and two vertices u,v ∈ Z are adjacent if and only if |u-v| ∈ D where the distance set D is a subset of the positive integers N. In this note we determine the chromatic index, the choice index, the total chromatic number and the total choice number of all integer distance graphs, and the choice number of special integer distance graphs.
A graph is edge cycle extendable if every cycle C that is formed from edges and one chord of a larger cycle C⁺ is also formed from edges and one chord of a cycle C' of length one greater than C with V(C') ⊆ V(C⁺). Edge cycle extendable graphs are characterized by every block being either chordal (every nontriangular cycle has a chord) or chordless (no nontriangular cycle has a chord); equivalently, every chord of a cycle of length five or more has a noncrossing chord.
Bipartite graphs with equal edge domination number and maximum matching cardinality are characterized. These two parameters are used to develop bounds on the vertex cover and total vertex cover numbers of graphs and a resulting chain of vertex covering, edge domination, and matching parameters is explored. In addition, the total vertex cover number is compared to the total domination number of trees and grid graphs.
The signed edge domination number and the signed total edge domination number of a graph are considered; they are variants of the domination number and the total domination number. Some upper bounds for them are found in the case of the -dimensional cube .
For two positive integers r and s, 𝓖(n;r,s) denotes to the class of graphs on n vertices containing no r of s-edge disjoint cycles and f(n;r,s) = max{𝓔(G):G ∈ 𝓖(n;r,s)}. In this paper, for integers r ≥ 2 and k ≥ 1, we determine f(n;r,2k+1) and characterize the edge maximal members in 𝓖(n;r,2k+1).