On the Second L-Functions Attached to Hilbert Modular Forms.
Nous rappelons que Manin décrit l’homologie singulière relative aux pointes de la courbe modulaire comme un quotient du groupe . En s’appuyant sur des techniques de fractions continues, nous donnons une expression indépendante de d’un relèvement de l’action des opérateurs de Hecke de sur .
This paper is a constructive investigation of the relationship between classical modular symbols and overconvergent -adic modular symbols. Specifically, we give a constructive proof of acontrol theorem (Theorem 1.1) due to the second author [19] proving existence and uniqueness of overconvergent eigenliftings of classical modular eigensymbols of non-critical slope. As an application we describe a polynomial-time algorithm for explicit computation of associated -adic -functions in this case. In...