Displaying 21 – 40 of 47

Showing per page

On p -adic L -functions of G L ( 2 ) × G L ( 2 ) over totally real fields

Haruzo Hida (1991)

Annales de l'institut Fourier

Let D ( s , f , g ) be the Rankin product L -function for two Hilbert cusp forms f and g . This L -function is in fact the standard L -function of an automorphic representation of the algebraic group G L ( 2 ) × G L ( 2 ) defined over a totally real field. Under the ordinarity assumption at a given prime p for f and g , we shall construct a p -adic analytic function of several variables which interpolates the algebraic part of D ( m , f , g ) for critical integers m , regarding all the ingredients m , f and g as variables.

On the 4-norm of an automorphic form

Valentin Blomer (2013)

Journal of the European Mathematical Society

We prove the optimal upper bound f f 4 4 q ϵ where f runs over an orthonormal basis of Maass cusp forms of prime level q and bounded spectral parameter.

On the orthogonal symmetry of L-functions of a family of Hecke Grössencharacters

J. B. Conrey, N. C. Snaith (2013)

Acta Arithmetica

The family of symmetric powers of an L-function associated with an elliptic curve with complex multiplication has received much attention from algebraic, automorphic and p-adic points of view. Here we examine one explicit such family from the perspectives of classical analytic number theory and random matrix theory, especially focusing on evidence for the symmetry type of the family. In particular, we investigate the values at the central point and give evidence that this family can be modeled by...

Currently displaying 21 – 40 of 47