Displaying 81 – 100 of 280

Showing per page

Iwasawa theory for symmetric powers of CM modular forms at non-ordinary primes

Robert Harron, Antonio Lei (2014)

Journal de Théorie des Nombres de Bordeaux

Let f be a cuspidal newform with complex multiplication (CM) and let p be an odd prime at which f is non-ordinary. We construct admissible p -adic L -functions for the symmetric powers of f , thus verifying conjectures of Dabrowski and Panchishkin in this special case. We combine this with recent work of Benois to prove the trivial zero conjecture in this setting. We also construct “mixed” plus and minus p -adic L -functions and prove an analogue of Pollack’s decomposition of the admissible p -adic L -functions....

Jacobi-Eisenstein series and p -adic interpolation of symmetric squares of cusp forms

Pavel I. Guerzhoy (1995)

Annales de l'institut Fourier

The aim of this paper is to construct and calculate generating functions connected with special values of symmetric squares of modular forms. The Main Theorem establishes these generating functions to be Jacobi-Eisenstein series i.e. Eisenstein series among Jacobi forms. A theorem on p -adic interpolation of the special values of the symmetric square of a p -ordinary modular form is proved as a corollary of our Main Theorem.

Koecher-Maass series of a certain half-integral weight modular form related to the Duke-Imamoḡlu-Ikeda lift

Hidenori Katsurada, Hisa-aki Kawamura (2014)

Acta Arithmetica

Let k and n be positive even integers. For a cuspidal Hecke eigenform h in the Kohnen plus space of weight k - n/2 + 1/2 for Γ₀(4), let f be the corresponding primitive form of weight 2k-n for SL₂(ℤ) under the Shimura correspondence, and Iₙ(h) the Duke-Imamoḡlu-Ikeda lift of h to the space of cusp forms of weight k for Spₙ(ℤ). Moreover, let ϕ I ( h ) , 1 be the first Fourier-Jacobi coefficient of Iₙ(h), and σ n - 1 ( ϕ I ( h ) , 1 ) be the cusp form in the generalized Kohnen plus space of weight k - 1/2 corresponding to ϕ I ( h ) , 1 under the...

L -functions of automorphic forms and combinatorics: Dyck paths

Laurent Habsieger, Emmanuel Royer (2004)

Annales de l'Institut Fourier

We give a combinatorial interpretation for the positive moments of the values at the edge of the critical strip of the L -functions of modular forms of G L ( 2 ) and G L ( 3 ) . We deduce some results about the asymptotics of these moments. We extend this interpretation to the moments twisted by the eigenvalues of Hecke operators.

La conjecture de Birch et Swinnerton-Dyer 𝐩 -adique

Pierre Colmez (2002/2003)

Séminaire Bourbaki

La conjecture de Birch et Swinnerton-Dyer prédit que l’ordre r du zéro en s = 1 de la fonction L d’une courbe elliptique E définie sur 𝐐 est égal au rang r du groupe de ses points rationnels. On sait démontrer cette conjecture si r = 0 ou 1 , mais on n’a aucun résultat reliant r et r si r 2 . Nous expliquerons comment Kato démontre que la fonction L p -adique attachée à E a, en s = 1 , un...

Le système d’Euler de Kato

Shanwen Wang (2013)

Journal de Théorie des Nombres de Bordeaux

Ce texte est consacré au système d’Euler de Kato, construit à partir des unités modulaires, et à son image par l’application exponentielle duale (loi de réciprocité explicite de Kato). La présentation que nous en donnons est sensiblement différente de la présentation originelle de Kato.

Currently displaying 81 – 100 of 280