Displaying 121 – 140 of 280

Showing per page

On critical values of twisted Artin L -functions

Peng-Jie Wong (2017)

Czechoslovak Mathematical Journal

We give a simple proof that critical values of any Artin L -function attached to a representation ρ with character χ ρ are stable under twisting by a totally even character χ , up to the dim ρ -th power of the Gauss sum related to χ and an element in the field generated by the values of χ ρ and χ over . This extends a result of Coates and Lichtenbaum as well as the previous work of Ward.

On effective determination of symmetric-square lifts

Qingfeng Sun (2014)

Open Mathematics

Let F be the symmetric-square lift with Laplace eigenvalue λ F (Δ) = 1+4µ2. Suppose that |µ| ≤ Λ. We show that F is uniquely determined by the central values of Rankin-Selberg L-functions L(s, F ⋇ h), where h runs over the set of holomorphic Hecke eigen cusp forms of weight κ ≡ 0 (mod 4) with κ≍ϱ+ɛ, t9 = max {4(1+4θ)/(1−18θ), 8(2−9θ)/3(1−18θ)} for any 0 ≤ θ < 1/18 and any ∈ > 0. Here θ is the exponent towards the Ramanujan conjecture for GL2 Maass forms.

On p -adic L -functions of G L ( 2 ) × G L ( 2 ) over totally real fields

Haruzo Hida (1991)

Annales de l'institut Fourier

Let D ( s , f , g ) be the Rankin product L -function for two Hilbert cusp forms f and g . This L -function is in fact the standard L -function of an automorphic representation of the algebraic group G L ( 2 ) × G L ( 2 ) defined over a totally real field. Under the ordinarity assumption at a given prime p for f and g , we shall construct a p -adic analytic function of several variables which interpolates the algebraic part of D ( m , f , g ) for critical integers m , regarding all the ingredients m , f and g as variables.

Currently displaying 121 – 140 of 280