The p-adic L-functions attached to Rankin convolutions of modular forms.
In this paper we derive, using the Gauss summation theorem for hypergeometric series, a simple integral expression for the reciprocal of Euler’s beta function. This expression is similar in form to several well-known integrals for the beta function itself.We then apply our new formula to the study of Whittaker functions, which are special functions that arise in the Fourier theory for automorphic forms on the general linear group. Specifically, we deduce explicit integral representations of “fundamental”...
We study the second moment of the central values of quadratic twists of a modular -function. Unconditionally, we obtain a lower bound which matches the conjectured asymptotic formula, while on GRH we prove the asymptotic formula itself.