Classe de conjugaison du frobenius des variétés abéliennes à réduction ordinaire
Soient une variété abélienne sur un corps de nombres et son groupe de Mumford–Tate. Soit une valuation de et pour tout nombre premier tel que , soit l’automorphisme de Frobenius (géométrique) de la cohomologie étale -adique de . On montre que si a une bonne réduction ordinaire en , alors il existe tel que, pour tout , soit conjugué à dans . On montre un résultat analogue pour le frobenius de la cohomologie cristalline de la réduction de modulo .