On Manin's conjecture for a certain singular cubic surface
We describe a method to compute the Brauer-Manin obstruction for smooth cubic surfaces over ℚ such that Br(S)/Br(ℚ) is a 3-group. Our approach is to associate a Brauer class with every ordered triplet of Galois invariant pairs of Steiner trihedra. We show that all order three Brauer classes may be obtained in this way. To show the effect of the obstruction, we give explicit examples.
Let X be a K3 surface over a number field K. We prove that there exists a finite algebraic field extension E/K such that X has ordinary reduction at every non-archimedean place of E outside a density zero set of places.
On considère une hauteur adélique absolue sur l’ensemble des points algébriques de la droite projective , relative à un fibré en droites ample. Nous donnons une formule asymptotique pour le nombre de points algébriques de de degré fixé et de hauteur inférieure à B, lorsque tend vers l’infini. Le cas où la hauteur considérée est la hauteur absolue usuelle a été traité par Masser et Vaaler. Nous généralisons ce résultat pour les hauteurs adéliques quelconques, en adoptant un point de vue géométrique...
Si est une variété algébrique projective sur un corps de nombres dont les points rationnels sont denses pour la topologie de Zariski, il est naturel de munir d’une hauteur et d’étudier de manière asymptotique les points de hauteur bornée sur . Le but de ce texte est de faire le survol d’un programme initié par Manin visant à interpréter de façon géométrique ce comportement.
On décrit dans cet article une version effective d’un théorème de Rumely : on peut trouver beaucoup de points entiers sur des ouverts (assez grands) de variétés arithmétiques, tout en contrôlant la hauteur de ces points. On applique ensuite ce résultat :- aux modèles de variétés abéliennes;- à la démonstration d’un analogue arithmétique des théorèmes de Bertini.
This is a survey paper on the distribution of algebraic points on algebraic varieties.
We investigate the average number of solutions of certain quadratic congruences. As an application, we establish Manin's conjecture for a cubic surface whose singularity type is A₅ + A₁.
We apply functional analytical and variational methods in order to study well-posedness and qualitative properties of evolution equations on product Hilbert spaces. To this aim we introduce an algebraic formalism for matrices of sesquilinear mappings. We apply our results to parabolic problems of different nature: a coupled diffusive system arising in neurobiology, a strongly damped wave equation, and a heat equation with dynamic boundary conditions.
On étudie différentes propriétés d’approximation pour des espaces homogènes (à stabilisateur fini) de sur un corps de nombres. On discute également du lien avec le problème de Galois inverse et on établit une formule pour le groupe de Brauer non ramifié de .
We consider Thue equations of the form , and assuming the truth of the abc-conjecture, we show that almost all locally soluble Thue equations of degree at least three violate the Hasse principle. A similar conclusion holds true for Fermat equations of degree at least six.