Simultaneous approximation of a real number by all conjugates of an algebraic number
In this paper we describe a -dimensional generalization of the Euclidean algorithm which stems from the dynamics of -interval exchange transformations. We investigate various diophantine properties of the algorithm including the quality of simultaneous approximations. We show it verifies the following Lagrange type theorem: the algorithm is eventually periodic if and only if the parameters lie in the same quadratic extension of
En 1976, Baum et Sweet ont donné le premier exemple d’une série formelle algébrique de degré sur ayant un développement en fraction continue dont les quotients partiels sont tous des polynômes en de degré ou . Cette série formelle est l’unique solution dans le corps de l’équation . En 1986, Mills et Robbins ont décrit un algorithme permettant de calculer le développement en fraction continue de la série de Baum et Sweet.Dans cet article, nous considérons les équations plus générales...