Addendum to the article: Polylogarithms in the field of omega (a root of a given cubic): Functional equations and ladders.
Very recently, the generating function of the Stern sequence , defined by and for any integer , has been considered from the arithmetical point of view. Coons [8] proved the transcendence of for every algebraic with , and this result was generalized in [6] to the effect that, for the same ’s, all numbers are algebraically independent. At about the same time, Bacher [4] studied the twisted version of Stern’s sequence, defined by and for any .The aim of our paper is to show...
We prove an algebraicity criterion for leaves of algebraic foliations defined over number fields. Namely, consider a number field embedded in , a smooth algebraic variety over , equipped with a rational point , and an algebraic subbundle of the its tangent bundle , defined over . Assume moreover that the vector bundle is involutive, i.e., closed under Lie bracket. Then it defines an holomorphic foliation of the analytic manifold , and one may consider its leaf through . We prove...
In this Mizar article, we complete the formalization of one of the items from Abad and Abad’s challenge list of “Top 100 Theorems” about Liouville numbers and the existence of transcendental numbers. It is item #18 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/. Liouville numbers were introduced by Joseph Liouville in 1844 [15] as an example of an object which can be approximated “quite closely” by a sequence of rational numbers. A real...