Displaying 21 – 40 of 232

Showing per page

On a two-variable zeta function for number fields

Jeffrey C. Lagarias, Eric Rains (2003)

Annales de l’institut Fourier

This paper studies a two-variable zeta function Z K ( w , s ) attached to an algebraic number field K , introduced by van der Geer and Schoof, which is based on an analogue of the Riemann-Roch theorem for number fields using Arakelov divisors. When w = 1 this function becomes the completed Dedekind zeta function ζ ^ K ( s ) of the field K . The function is a meromorphic function of two complex variables with polar divisor s ( w - s ) , and it satisfies the functional equation Z K ( w , s ) = Z K ( w , w - s ) . We consider the special case K = , where for w = 1 this function...

On critical values of twisted Artin L -functions

Peng-Jie Wong (2017)

Czechoslovak Mathematical Journal

We give a simple proof that critical values of any Artin L -function attached to a representation ρ with character χ ρ are stable under twisting by a totally even character χ , up to the dim ρ -th power of the Gauss sum related to χ and an element in the field generated by the values of χ ρ and χ over . This extends a result of Coates and Lichtenbaum as well as the previous work of Ward.

Currently displaying 21 – 40 of 232