On a two-variable -adic -function.
This paper studies a two-variable zeta function attached to an algebraic number field , introduced by van der Geer and Schoof, which is based on an analogue of the Riemann-Roch theorem for number fields using Arakelov divisors. When this function becomes the completed Dedekind zeta function of the field . The function is a meromorphic function of two complex variables with polar divisor , and it satisfies the functional equation . We consider the special case , where for this function...
We give a simple proof that critical values of any Artin -function attached to a representation with character are stable under twisting by a totally even character , up to the -th power of the Gauss sum related to and an element in the field generated by the values of and over . This extends a result of Coates and Lichtenbaum as well as the previous work of Ward.