Displaying 421 – 440 of 1029

Showing per page

Lower bounds of discrete moments of the derivatives of the Riemann zeta-function on the critical line

Thomas Christ, Justas Kalpokas (2013)

Journal de Théorie des Nombres de Bordeaux

We establish unconditional lower bounds for certain discrete moments of the Riemann zeta-function and its derivatives on the critical line. We use these discrete moments to give unconditional lower bounds for the continuous moments I k , l ( T ) = 0 T | ζ ( l ) ( 1 2 + i t ) | 2 k d t , where l is a non-negative integer and k 1 a rational number. In particular, these lower bounds are of the expected order of magnitude for I k , l ( T ) .

Mean value theorems for L-functions over prime polynomials for the rational function field

Julio C. Andrade, Jonathan P. Keating (2013)

Acta Arithmetica

The first and second moments are established for the family of quadratic Dirichlet L-functions over the rational function field at the central point s=1/2, where the character χ is defined by the Legendre symbol for polynomials over finite fields and runs over all monic irreducible polynomials P of a given odd degree. Asymptotic formulae are derived for fixed finite fields when the degree of P is large. The first moment obtained here is the function field analogue of a result due to Jutila in the...

Mean value theorems for long Dirichlet polynomials and tails of Dirichlet series

D. A. Goldston, S. M. Gonek (1998)

Acta Arithmetica

We obtain formulas for computing mean values of Dirichlet polynomials that have more terms than the length of the integration range. These formulas allow one to compute the contribution of off-diagonal terms provided one knows the correlation functions for the coefficients of the Dirichlet polynomials. A smooth weight is used to control error terms, and this weight can in typical applications be removed from the final result. Similar results are obtained for the tails of Dirichlet series. Four examples...

Mean-periodicity and zeta functions

Ivan Fesenko, Guillaume Ricotta, Masatoshi Suzuki (2012)

Annales de l’institut Fourier

This paper establishes new bridges between zeta functions in number theory and modern harmonic analysis, namely between the class of complex functions, which contains the zeta functions of arithmetic schemes and closed with respect to product and quotient, and the class of mean-periodic functions in several spaces of functions on the real line. In particular, the meromorphic continuation and functional equation of the zeta function of an arithmetic scheme with its expected analytic shape is shown...

Currently displaying 421 – 440 of 1029