Displaying 41 – 60 of 72

Showing per page

Sommes de Dedekind elliptiques et formes de Jacobi

Abdelmejid Bayad (2001)

Annales de l’institut Fourier

À partir des formes de Jacobi D L ( z , ϕ ) , on construit une somme de Dedekind elliptique. On obtient ainsi un analogue elliptique aux sommes multiples de Dedekind construites à partir des fonctions cotangentes, étudiées par D. Zagier. En outre, on établit une loi de réciprocité satisfaite par ces nouvelles sommes. Par une procédure de limite, on peut retrouver la loi de réciprocité remplie par les sommes multiples de Dedekind classiques. D’autre part, en les spécialisant en des paramètres de points de 2- division,...

Special values of multiple gamma functions

William Duke, Özlem Imamoḡlu (2006)

Journal de Théorie des Nombres de Bordeaux

We give a Chowla-Selberg type formula that connects a generalization of the eta-function to GL ( n ) with multiple gamma functions. We also present some simple infinite product identities for certain special values of the multiple gamma function.

Standard Models of Abstract Intersection Theory for Operators in Hilbert Space

Grzegorz Banaszak, Yoichi Uetake (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

For an operator in a possibly infinite-dimensional Hilbert space of a certain class, we set down axioms of an abstract intersection theory, from which the Riemann hypothesis regarding the spectrum of that operator follows. In our previous paper (2011) we constructed a GNS (Gelfand-Naimark-Segal) model of abstract intersection theory. In this paper we propose another model, which we call a standard model of abstract intersection theory. We show that there is a standard model of abstract intersection...

Strong spectral gaps for compact quotients of products of PSL ( 2 , ) )

Dubi Kelmer, Peter Sarnak (2009)

Journal of the European Mathematical Society

The existence of a strong spectral gap for quotients Γ G of noncompact connected semisimple Lie groups is crucial in many applications. For congruence lattices there are uniform and very good bounds for the spectral gap coming from the known bounds towards the Ramanujan–Selberg conjectures. If G has no compact factors then for general lattices a spectral gap can still be established, but there is no uniformity and no effective bounds are known. This note is concerned with the spectral gap for an irreducible...

Currently displaying 41 – 60 of 72