Displaying 121 – 140 of 147

Showing per page

ARI/GARI, la dimorphie et l'arithmétique des multizêtas : un premier bilan

Jean Ecalle (2003)

Journal de théorie des nombres de Bordeaux

Nous tentons, dans ce survol, de présenter une structure méconnue : l'algèbre de Lie ARI et son groupe GARI. Puis nous montrons quels progrès elle a déjà permis de réaliser dans l'étude arithmético-algébrique des valeurs zêta multiples et aussi quelles possibilités elle ouvre pour l'exploration du phénomène plus général de /emph{dimorphie numérique}.

Arithmetic of linear forms involving odd zeta values

Wadim Zudilin (2004)

Journal de Théorie des Nombres de Bordeaux

A general hypergeometric construction of linear forms in (odd) zeta values is presented. The construction allows to recover the records of Rhin and Viola for the irrationality measures of ζ ( 2 ) and ζ ( 3 ) , as well as to explain Rivoal’s recent result on infiniteness of irrational numbers in the set of odd zeta values, and to prove that at least one of the four numbers ζ ( 5 ) , ζ ( 7 ) , ζ ( 9 ) , and ζ ( 11 ) is irrational.

Artin formalism for Selberg zeta functions of co-finite Kleinian groups

Eliot Brenner, Florin Spinu (2009)

Journal de Théorie des Nombres de Bordeaux

Let Γ 3 be a finite-volume quotient of the upper-half space, where Γ SL ( 2 , ) is a discrete subgroup. To a finite dimensional unitary representation χ of Γ one associates the Selberg zeta function Z ( s ; Γ ; χ ) . In this paper we prove the Artin formalism for the Selberg zeta function. Namely, if Γ ˜ is a finite index group extension of Γ in SL ( 2 , ) , and π = Ind Γ Γ ˜ χ is the induced representation, then Z ( s ; Γ ; χ ) = Z ( s ; Γ ˜ ; π ) . In the second part of the paper we prove by a direct method the analogous identity for the scattering function, namely φ ( s ; Γ ; χ ) = φ ( s ; Γ ˜ ; π ) , for an appropriate...

Asymptotic analysis and special values of generalised multiple zeta functions

M. Zakrzewski (2012)

Banach Center Publications

This is an expository article, based on the talk with the same title, given at the 2011 FASDE II Conference in Będlewo, Poland. In the introduction we define Multiple Zeta Values and certain historical remarks are given. Then we present several results on Multiple Zeta Values and, in particular, we introduce certain meromorphic differential equations associated to their generating function. Finally, we make some conclusive remarks on generalisations of Multiple Zeta Values as well as the meromorphic...

Currently displaying 121 – 140 of 147