Correction to the paper "On a kind of uniform distribution of values of multiplicative functions in residue classes", Acta Arithmetica 31(1976), pp. 291-294
Consider the group over the ring of algebraic integers of a number field . Define the height of a matrix to be the maximum over all the conjugates of its entries in absolute value. Let be the number of matrices in with height bounded by . We determine the asymptotic behaviour of as goes to infinity including an error term,with being the degree of . The constant involves the discriminant of , an integral depending only on the signature of , and the value of the Dedekind zeta function...
In this paper we generalize the method used to prove the Prime Number Theorem to deal with finite fields, and prove the following theorem: where denotes the number of monic irreducible polynomials in with norm .
Hasse showed the existence and computed the Dirichlet density of the set of primes for which the order of is odd; it is . Here we mimic successfully Hasse’s method to compute the density of monic irreducibles in for which the order of is odd. But on the way, we are also led to a new and elementary proof of these densities. More observations are made, and averages are considered, in particular, an average of the ’s as varies through all rational primes.