Displaying 61 – 80 of 457

Showing per page

Class groups of abelian fields, and the main conjecture

Cornelius Greither (1992)

Annales de l'institut Fourier

This first part of this paper gives a proof of the main conjecture of Iwasawa theory for abelian base fields, including the case p = 2 , by Kolyvagin’s method of Euler systems. On the way, one obtains a general result on local units modulo circular units. This is then used to deduce theorems on the order of χ -parts of p -class groups of abelian number fields: first for relative class groups of real fields (again including the case p = 2 ). As a consequence, a generalization of the Gras conjecture is stated...

Class groups of large ranks in biquadratic fields

Mahesh Kumar Ram (2024)

Czechoslovak Mathematical Journal

For any integer n > 1 , we provide a parametric family of biquadratic fields with class groups having n -rank at least 2. Moreover, in some cases, the n -rank is bigger than 4.

Class Number Two for Real Quadratic Fields of Richaud-Degert Type

Mollin, R. A. (2009)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary: 11D09, 11A55, 11C08, 11R11, 11R29; Secondary: 11R65, 11S40; 11R09.This paper contains proofs of conjectures made in [16] on class number 2 and what this author has dubbed the Euler-Rabinowitsch polynomial for real quadratic fields. As well, we complete the list of Richaud-Degert types given in [16] and show how the behaviour of the Euler-Rabinowitsch polynomials and certain continued fraction expansions come into play in the complete determination...

Class numbers of totally real fields and applications to the Weber class number problem

John C. Miller (2014)

Acta Arithmetica

The determination of the class number of totally real fields of large discriminant is known to be a difficult problem. The Minkowski bound is too large to be useful, and the root discriminant of the field can be too large to be treated by Odlyzko's discriminant bounds. We describe a new technique for determining the class number of such fields, allowing us to attack the class number problem for a large class of number fields not treatable by previously known methods. We give an application to Weber's...

Currently displaying 61 – 80 of 457