Dedekind sums with characters and class numbers of imaginary quadratic fields
This paper is a continuation of [2]. We construct unconditionally several families of number fields with large class numbers. They are number fields whose Galois closures have as the Galois groups, dihedral groups , , and cyclic groups , . We first construct families of number fields with small regulators, and by using the strong Artin conjecture and applying some modification of zero density result of Kowalski-Michel, we choose subfamilies such that the corresponding -functions are zero free...
Let A, D, K, k ∈ ℕ with D square free and 2 ∤ k,B = 1,2 or 4 and , and let denote the class number of the imaginary quadratic field . In this paper, we give the all-positive integer solutions of the Diophantine equation Ax² + μ₁B = K((Ay² + μ₂B)/K)ⁿ, 2 ∤ n, n > 1 and we prove that if D > 1, then , where D, and n satisfy , x ∈ ℕ, 2 ∤ n, n > 1. The results are valuable for the realization of quadratic field cryptosystem.
Let be any integer and fix an odd prime . Let denote the -fold composition of the Chebyshev polynomial of degree shifted by . If this polynomial is irreducible, let , where is a root of . We use a theorem of Dedekind in conjunction with previous results of the author to give conditions on that ensure is monogenic. For other values of , we apply a result of Guàrdia, Montes, and Nart to obtain a formula for the discriminant of and compute an integral basis for the ring of integers...