Parameterized families of quadratic number fields with 3-rank at least 2
La composition de Gauss donne une structure de groupe aux orbites de formes quadratiques binaires entières de discriminant , sous l’action de par changement de variable, essentiellement le groupe des classes de l’ordre quadratique de discriminant . Les domaines fondamentaux associés permettent calculs explicites et évaluation d’ordres moyens. Je présenterai les lois de composition supérieures découvertes par M. Bhargava à partir de la classification des espaces vectoriels préhomogènes réguliers,...
Let be an odd prime, be a primitive root modulo and with . In 2007, R. Queme raised the question whether the -rank ( an odd prime ) of the ideal class group of the -th cyclotomic field is equal to the degree of the greatest common divisor over the finite field of and Kummer’s polynomial . In this paper, we shall give the complete answer for this question enumerating a counter-example.
For an algebraic number field with -class group of type , the structure of the -class groups of the four unramified cyclic cubic extension fields , , of is calculated with the aid of presentations for the metabelian Galois group of the second Hilbert -class field of . In the case of a quadratic base field it is shown that the structure of the -class groups of the four -fields frequently determines the type of principalization of the -class group of in . This provides...