The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study the problem of constructing and enumerating, for any integers , number fields of degree whose ideal class groups have “large" -rank. Our technique relies fundamentally on Hilbert’s irreducibility theorem and results on integral points of bounded degree on curves.
We define a sequence of rational integers for each finite index subgroup E of the group of units in some finite Galois number fields K in which prime p ramifies. For two subgroups E’ ⊂ E of finite index in the group of units of K we prove the formula . This is a generalization of results of P. Dénes [3], [4] and F. Kurihara [5].
Currently displaying 1 –
20 of
23