Das Einbettungsproblem für algebraische Zahlkörper bei Beschränkung der Verzweigung.
Soit un anneau de Dedekind, de corps des fractions , et soit une extension galoisienne de , dont le groupe de Galois est cyclique d’ordre premier. On note la clôture intégrale de dans . Il existe une unique décomposition du -module en somme directe de sous-modules indécomposables. On détermine cette décomposition lorsque est un corps local ou un corps de nombres. Le résultat dépend d’une part des caractères irréductibles de sur , d’autre part des nombres de ramification associés...
Soit un nombre premier impair. Soit une -extension galoisienne de corps ne contenant pas les racines -ièmes de l’unité : . Notons le groupe de Galois de et son sous-groupe de Frattini. Via une notion de descente galoisienne et les parallélogrammes galoisiens qu’elle induit, nous construisons ici toutes les extensions telles que soit d’ordre .
This paper is a continuation of [2]. We construct unconditionally several families of number fields with large class numbers. They are number fields whose Galois closures have as the Galois groups, dihedral groups , , and cyclic groups , . We first construct families of number fields with small regulators, and by using the strong Artin conjecture and applying some modification of zero density result of Kowalski-Michel, we choose subfamilies such that the corresponding -functions are zero free...