Page 1 Next

Displaying 1 – 20 of 22

Showing per page

Calcul et rationalité de fonctions de Belyi en genre 0

Jean-Marc Couveignes (1994)

Annales de l'institut Fourier

L’article comporte une méthode de calcul de fonctions de Belyi “optimales”, associées à des dessins plans. Cette étude conduit à s’interroger sur la possibilité de définir une fonction de Belyi sur le corps des modules du dessin. Pour les arbres par exemple, nous montrons que c’est toujours le cas. La preuve donne une méthode pour spécifier une telle fonction. Nous donnons ensuite un exemple de dessin qui n’admet pas de fonction de Belyi sur son corps des modules. Enfin, nous étudions la question...

Classes de Steinitz d’extensions à groupe de Galois A 4

Marjory Godin, Bouchaïb Sodaïgui (2002)

Journal de théorie des nombres de Bordeaux

Soient k un corps de nombres et 𝒞 l ( k ) son groupe des classes. Une extension de k à groupe de Galois isomorphe au groupe alterné A 4 est dite alternée. Soit E / k une extension cyclique de degré 3 . On calcule la classe de Steinitz, dans 𝒞 l ( k ) , de toute extension alternée contenant E . Sous l’hypothèse que le nombre des classes de k est impair, on détermine l’ensemble de telles classes et on montre que c’est un sous-groupe de 𝒞 l ( k ) lorsque l’anneau des entiers de E est libre sur celui de k ou 3 ne divise pas l’ordre...

Combinatoire des arbres planaires et arithmétique des courbes hyperelliptiques

Fedor Pakovitch (1998)

Annales de l'institut Fourier

Le but de cet article est de proposer une nouvelle méthode pour des études dans le cadre de la théorie des “dessins d’enfants” de A. Grothendieck de certaines questions concernant l’action du groupe de Galois absolu sur l’ensemble des arbres planaires.On définit l’application qui associe à chaque arbre planaire à n arêtes, une courbe hyperelliptique avec un point de n -division. Cette construction permet d’établir un lien entre la théorie de la torsion des courbes hyperelliptiques et celle des “dessins...

Conservative polynomials and yet another action of Gal ( ¯ / ) on plane trees

Fedor Pakovich (2008)

Journal de Théorie des Nombres de Bordeaux

In this paper we study an action D of the absolute Galois group Γ = Gal ( ¯ / ) on bicolored plane trees. In distinction with the similar action provided by the Grothendieck theory of “Dessins d’enfants” the action D is induced by the action of Γ on equivalence classes of conservative polynomials which are the simplest examples of postcritically finite rational functions. We establish some basic properties of the action D and compare it with the Grothendieck action.

Currently displaying 1 – 20 of 22

Page 1 Next