The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we give the complete characterization of the –torsion subgroups of certain idèle–class groups associated to characteristic function fields. As an application, we answer a question which arose in the context of Tan’s approach [6] to an important particular case of a generalization of a conjecture of Gross [4] on special values of –functions.
We state a conjecture concerning modular absolutely irreducible odd 2-dimensional
representations of the absolute Galois group over finite fields which is purely
combinatorial (without using modular forms) and proof that it is equivalent to Serre’s
strong conjecture. The main idea is to replace modular forms with coefficients in a
finite field of characteristic , by their counterparts in the theory of modular
symbols.
For an algebraic number field and a prime , define the number to be the maximal number such that there exists a Galois extension of whose Galois group is a free pro--group of rank . The Leopoldt conjecture implies , ( denotes the number of complex places of ). Some examples of and with have been known so far. In this note, the invariant is studied, and among other things some examples with are given.
Le théorème de Belyi affirme que sur toute courbe algébrique lisse projective et géométriquement connexe, définie sur , il existe une fonction non ramifiée en dehors de . Nous montrons que cette fonction peut être choisie sans automorphismes, c’est-à-dire telle que pour tout automorphisme non trivial de , on ait . Nous en déduisons que si est une extension finie de , toute -classe d’isomorphisme de courbes algébriques lisses projectives géométriquement connexes peut être caractérisée...
The one-parameter family of polynomials is a subfamily of the two-parameter family of Jacobi polynomials. We prove that for each , the polynomial is irreducible over for all but finitely many . If is odd, then with the exception of a finite set of , the Galois group of is ; if is even, then the exceptional set is thin.
Currently displaying 1 –
20 of
34