Parallélogrammes galoisiens infinis
A number field , with ring of integers , is said to be a Pólya field if the -algebra formed by the integer-valued polynomials on admits a regular basis. In a first part, we focus on fields with degree less than six which are Pólya fields. It is known that a field is a Pólya field if certain characteristic ideals are principal. Analogously to the classical embedding problem, we consider the embedding of in a Pólya field. We give a positive answer to this embedding problem by showing that...
A number field , with ring of integers , is said to be a Pólya field when the -algebra formed by the integer-valued polynomials on admits a regular basis. It is known that such fields are characterized by the fact that some characteristic ideals are principal. Analogously to the classical embedding problem in a number field with class number one, when is not a Pólya field, we are interested in the embedding of in a Pólya field. We study here two notions which can be considered as measures...
Soit un corps et une extension quadratique de . Étant donné un polynôme de à groupe de Galois cyclique, nous donnons une méthode pour construire un polynôme de à groupe de Galois diédral, à partir des racines de . Cette méthode est tout à fait explicite : nous donnons de nombreux exemples de polynômes à groupe de Galois diédral sur le corps .
The fields defined by the polynomials constructed in E. Nart and the author in J. Number Theory 16, (1983), 6–13, Th. 2.1, with absolute Galois group the alternating group , can be embedded in any central extension of if and only if , or and is a sum of two squares. Consequently, for theses values of , every central extension of occurs as a Galois group over .
Soit une extension galoisienne à groupe de Galois métacyclique d’ordre ( divisant et ) possédant un sous-groupe distingué d’ordre . On note l’unique sous-corps de de degré sur , (resp. ) le clôture intégrale de dans (resp. ) et l’opérateur trace dans l’extension . On démontre que est un module localement libre sur l’anneau . On montre ensuite que l’idéal engendré par les résolvantes de Fröhlich associées à un caractère fidèle absolument irréductible de peut être...
We give an infinite set of distinct monogenic septimic fields whose normal closure has Galois group .