Page 1

Displaying 1 – 17 of 17

Showing per page

Pólya fields and Pólya numbers

Amandine Leriche (2010)

Actes des rencontres du CIRM

A number field K , with ring of integers 𝒪 K , is said to be a Pólya field if the 𝒪 K -algebra formed by the integer-valued polynomials on 𝒪 K admits a regular basis. In a first part, we focus on fields with degree less than six which are Pólya fields. It is known that a field K is a Pólya field if certain characteristic ideals are principal. Analogously to the classical embedding problem, we consider the embedding of K in a Pólya field. We give a positive answer to this embedding problem by showing that...

Pólya fields, Pólya groups and Pólya extensions: a question of capitulation

Amandine Leriche (2011)

Journal de Théorie des Nombres de Bordeaux

A number field K , with ring of integers 𝒪 K , is said to be a Pólya field when the 𝒪 K -algebra formed by the integer-valued polynomials on 𝒪 K admits a regular basis. It is known that such fields are characterized by the fact that some characteristic ideals are principal. Analogously to the classical embedding problem in a number field with class number one, when K is not a Pólya field, we are interested in the embedding of K in a Pólya field. We study here two notions which can be considered as measures...

Polynômes à groupe de Galois diédral

Dominique Martinais, Leila Schneps (1992)

Journal de théorie des nombres de Bordeaux

Soit K un corps et K 1 une extension quadratique de K . Étant donné un polynôme P de K 1 [ X ] à groupe de Galois cyclique, nous donnons une méthode pour construire un polynôme Q de K [ X ] à groupe de Galois diédral, à partir des racines de P . Cette méthode est tout à fait explicite : nous donnons de nombreux exemples de polynômes à groupe de Galois diédral sur le corps .

Polynomials over Q solving an embedding problem

Nuria Vila (1985)

Annales de l'institut Fourier

The fields defined by the polynomials constructed in E. Nart and the author in J. Number Theory 16, (1983), 6–13, Th. 2.1, with absolute Galois group the alternating group A n , can be embedded in any central extension of A n if and only if n 0 ( m o d 8 ) , or n 2 ( m o d 8 ) and n is a sum of two squares. Consequently, for theses values of n , every central extension of A n occurs as a Galois group over Q .

Propriétés locales et globales de certaines extensions métacycliques

Jean Cougnard (1982)

Annales de l'institut Fourier

Soit N / Q une extension galoisienne à groupe de Galois métacyclique G d’ordre n p a ( n divisant p - 1 et a 1 ) possédant un sous-groupe distingué d’ordre p a . On note N 1 l’unique sous-corps de N de degré n p a - 1 sur Q , O N (resp. O N 1 ) le clôture intégrale de Z dans N (resp. N 1 ) et v l’opérateur trace dans l’extension N / N 1 . On démontre que O N / O N 1 est un module localement libre sur l’anneau A = Z [ G ] / v . On montre ensuite que l’idéal engendré par les résolvantes de Fröhlich associées à un caractère fidèle absolument irréductible de G peut être...

PSL ( 2 , 7 ) septimic fields with a power basis

Melisa J. Lavallee, Blair K. Spearman, Qiduan Yang (2012)

Journal de Théorie des Nombres de Bordeaux

We give an infinite set of distinct monogenic septimic fields whose normal closure has Galois group P S L ( 2 , 7 ) .

Currently displaying 1 – 17 of 17

Page 1