On the equivariant main conjecture of Iwasawa theory
The family of symmetric powers of an L-function associated with an elliptic curve with complex multiplication has received much attention from algebraic, automorphic and p-adic points of view. Here we examine one explicit such family from the perspectives of classical analytic number theory and random matrix theory, especially focusing on evidence for the symmetry type of the family. In particular, we investigate the values at the central point and give evidence that this family can be modeled by...
Lately, explicit upper bounds on (for primitive Dirichlet characters ) taking into account the behaviors of on a given finite set of primes have been obtained. This yields explicit upper bounds on residues of Dedekind zeta functions of abelian number fields taking into account the behavior of small primes, and it as been explained how such bounds yield improvements on lower bounds of relative class numbers of CM-fields whose maximal totally real subfields are abelian. We present here some other...
A -adic version of Stark’s Conjecture at is attributed to J.-P. Serre and stated (faultily) in Tate’s book on the Conjecture. Building instead on our previous paper (and work of Rubin) on the complex abelian case, we give a new approach to such a conjecture for real ray-class extensions of totally real number fields. We study the coherence of our -adic conjecture and then formulate some integral refinements, both alone and in combination with its complex analogue. A ‘Weak Combined Refined’ version...