Displaying 461 – 480 of 563

Showing per page

On the orthogonal symmetry of L-functions of a family of Hecke Grössencharacters

J. B. Conrey, N. C. Snaith (2013)

Acta Arithmetica

The family of symmetric powers of an L-function associated with an elliptic curve with complex multiplication has received much attention from algebraic, automorphic and p-adic points of view. Here we examine one explicit such family from the perspectives of classical analytic number theory and random matrix theory, especially focusing on evidence for the symmetry type of the family. In particular, we investigate the values at the central point and give evidence that this family can be modeled by...

On the prime density of Lucas sequences

Pieter Moree (1996)

Journal de théorie des nombres de Bordeaux

The density of primes dividing at least one term of the Lucas sequence L n ( P ) n = 0 , defined by L 0 ( P ) = 2 , L 1 ( P ) = P and L n ( P ) = P L n - 1 ( P ) + L n - 2 ( P ) for n 2 , with P an arbitrary integer, is determined.

Currently displaying 461 – 480 of 563