On the minimum of the unit lattice
Given a number field Galois over the rational field , and a positive integer prime to the class number of , there exists an abelian extension (of exponent ) such that the -torsion subgroup of the Brauer group of is equal to the relative Brauer group of .
We prove lower and upper bounds for the class numbers of algebraic curves defined over finite fields. These bounds turn out to be better than most of the previously known bounds obtained using combinatorics. The methods used in the proof are essentially those from the explicit asymptotic theory of global fields. We thus provide a concrete application of effective results from the asymptotic theory of global fields and their zeta functions.
The aim of this paper is to clarify the ordinarity of cyclotomic function fields. In the previous work [J. Number Theory 133 (2013)], the author determined all monic irreducible polynomials m such that the maximal real subfield of the mth cyclotomic function field is ordinary. In this paper, we extend this result to the general case.