Displaying 441 – 460 of 563

Showing per page

On the n -torsion subgroup of the Brauer group of a number field

Hershy Kisilevsky, Jack Sonn (2003)

Journal de théorie des nombres de Bordeaux

Given a number field K Galois over the rational field , and a positive integer n prime to the class number of K , there exists an abelian extension L / K (of exponent n ) such that the n -torsion subgroup of the Brauer group of K is equal to the relative Brauer group of L / K .

On the number of rational points of Jacobians over finite fields

Philippe Lebacque, Alexey Zykin (2015)

Acta Arithmetica

We prove lower and upper bounds for the class numbers of algebraic curves defined over finite fields. These bounds turn out to be better than most of the previously known bounds obtained using combinatorics. The methods used in the proof are essentially those from the explicit asymptotic theory of global fields. We thus provide a concrete application of effective results from the asymptotic theory of global fields and their zeta functions.

On the ordinarity of the maximal real subfield of cyclotomic function fields

Daisuke Shiomi (2014)

Acta Arithmetica

The aim of this paper is to clarify the ordinarity of cyclotomic function fields. In the previous work [J. Number Theory 133 (2013)], the author determined all monic irreducible polynomials m such that the maximal real subfield of the mth cyclotomic function field is ordinary. In this paper, we extend this result to the general case.

Currently displaying 441 – 460 of 563