Displaying 561 – 580 of 3416

Showing per page

Comparing orders of Selmer groups

Sébastien Bosca (2005)

Journal de Théorie des Nombres de Bordeaux

Using both class field and Kummer theories, we propose calculations of orders of two Selmer groups, and compare them: the quotient of the orders only depends on local criteria.

Compatibility of the theta correspondence with the Whittaker functors

Vincent Lafforgue, Sergey Lysenko (2011)

Bulletin de la Société Mathématique de France

We prove that the global geometric theta-lifting functor for the dual pair ( H , G ) is compatible with the Whittaker functors, where ( H , G ) is one of the pairs ( S 𝕆 2 n , 𝕊 p 2 n ) , ( 𝕊 p 2 n , S 𝕆 2 n + 2 ) or ( 𝔾 L n , 𝔾 L n + 1 ) . That is, the composition of the theta-lifting functor from H to G with the Whittaker functor for G is isomorphic to the Whittaker functor for H .

Completely normal elements in some finite abelian extensions

Ja Koo, Dong Shin (2013)

Open Mathematics

We present some completely normal elements in the maximal real subfields of cyclotomic fields over the field of rational numbers, relying on the criterion for normal element developed in [Jung H.Y., Koo J.K., Shin D.H., Normal bases of ray class fields over imaginary quadratic fields, Math. Z., 2012, 271(1–2), 109–116]. And, we further find completely normal elements in certain abelian extensions of modular function fields in terms of Siegel functions.

Composite rational functions expressible with few terms

Clemens Fuchs, Umberto Zannier (2012)

Journal of the European Mathematical Society

We consider a rational function f which is ‘lacunary’ in the sense that it can be expressed as the ratio of two polynomials (not necessarily coprime) having each at most a given number of terms. Then we look at the possible decompositions f ( x ) = g ( h ( x ) ) , where g , h are rational functions of degree larger than 1. We prove that, apart from certain exceptional cases which we completely describe, the degree of g is bounded only in terms of (and we provide explicit bounds). This supports and quantifies the intuitive...

Comptage exact de discriminants d'extensions abéliennes

Henri Cohen (2000)

Journal de théorie des nombres de Bordeaux

Le but de cet article est d’expliquer comment calculer exactement le nombre de classes d’isomorphismes d’extensions abéliennes de en degré inférieur ou égal à 4 et de discriminant majoré par une borne donnée. On parvient par exemple à calculer le nombre de corps cubiques cycliques de discriminant inférieur ou égal à 10 37 .

Computation of 2-groups of positive classes of exceptional number fields

Jean-François Jaulent, Sebastian Pauli, Michael E. Pohst, Florence Soriano–Gafiuk (2008)

Journal de Théorie des Nombres de Bordeaux

We present an algorithm for computing the 2-group 𝒞 F p o s of the positive divisor classes in case the number field F has exceptional dyadic places. As an application, we compute the 2-rank of the wild kernel W K 2 ( F ) in K 2 ( F ) .

Currently displaying 561 – 580 of 3416