Displaying 41 – 60 of 87

Showing per page

Interpolation of hypergeometric ratios in a global field of positive characteristic

Greg W. Anderson (2007)

Annales de l’institut Fourier

For each global field of positive characteristic we exhibit many examples of two-variable algebraic functions possessing properties consistent with a conjectural refinement of the Stark conjecture in the function field case recently proposed by the author. All the examples are Coleman units. We obtain our results by studying rank one shtukas in which both zero and pole are generic, i. e., shtukas not associated to any Drinfeld module.

Intersection de courbes et de sous-groupes et problèmes de minoration de hauteur dans les variétés abéliennes C.M.

Nicolas Ratazzi (2008)

Annales de l’institut Fourier

Nous prouvons un cas particulier de la conjecture suivante e Zilber-Pink, conjecture généralisant celle de Manin-Mumford  : soit X une courbe incluse dans une variété abélienne A sur ¯ , qui n’est pas incluse dans une sous-variété de torsion  ; l’intersection de X avec la réunion de tous les sous-groupes de codimension au moins 2 est finie. Nous démontrons ici le cas où A est une puissance d’une variété abélienne C.M. simple. La preuve reprend la stratégie de Rémond (suivant Bombieri-Masser-Zannier)...

Invariants and coinvariants of semilocal units modulo elliptic units

Stéphane Viguié (2012)

Journal de Théorie des Nombres de Bordeaux

Let p be a prime number, and let k be an imaginary quadratic number field in which p decomposes into two primes 𝔭 and 𝔭 ¯ . Let k be the unique p -extension of k which is unramified outside of 𝔭 , and let K be a finite extension of k , abelian over k . Let 𝒰 / 𝒞 be the projective limit of principal semi-local units modulo elliptic units. We prove that the various modules of invariants and coinvariants of 𝒰 / 𝒞 are finite. Our approach uses distributions and the p -adic L -function, as defined in [5].

Invariants de classes : propriétés fonctorielles et applications à l’étude du noyau

Jean Gillibert (2007)

Journal de Théorie des Nombres de Bordeaux

L’homomorphisme de classes mesure la structure galoisienne de torseurs – sous un schéma en groupes fini et plat – obtenus grâce au cobord d’une suite exacte. Son introduction est due à Martin Taylor (la suite exacte étant une isogénie entre schémas abéliens). Nous commençons par énoncer quelques propriétés générales de cet homomorphisme, puis nous poursuivons son étude dans le cas où la suite exacte est donnée par la multiplication par n sur une extension d’un schéma abélien par un tore.

Currently displaying 41 – 60 of 87